

CorrectAddress
Version 10.0.0

User Guide

1 Beacon ST FL 33
Boston MA 02108

Tel: (888) 712-3332 (Support) or (888) 727-8822 (Sales)
Fax: (888) 882-7082

Email: dataquality.info@experian.com

Web: www.edq.com

CA90-15-02-2023

Copyright
All copyright and other rights in this manual and the licensed programs described in this manual are the property of

Experian Ltd save for copyright in data in respect of which the copyright belongs to the relevant data provider.

No part of this manual may be copied, reproduced, translated or reduced to any electronic medium or machine readable
form without the written consent of Experian Ltd.

© Experian Ltd 2023.

Experian holds a non-exclusive license to publish and sell ZIP+4, e-LOT, and ZIPMove information. The price of
CorrectAddress® is neither established, nor controlled or approved by the United States Postal Service. ZIP+4, e-LOT,

CASS, DPV, RDI, LACSLink , SuiteLink™ and ZIPMove are registered trademarks of the United States Postal Service. Any
advertising of this product was neither approved nor endorsed by the United States Postal Service.

© United States Postal Service 2012

Trademarks
NameSearch® and CorrectAddress® are registered trademarks of Experian Ltd.

Microsoft, Visual Studio, Access. Microsoft.NET Framework and Windows are registered trademarks of the Microsoft
Corporation in the United States and other countries.

Other product names mentioned in this manual may be a trademark or trademarks of their respective companies and are
hereby acknowledged.

Table of Contents

CHAPTER 1 - INTRODUCTION .. 1-1
New and Improved in Version 10.0 .. 1-2

CHAPTER 2 - INSTALLATION .. 2-1
System requirements ... 2-1
Windows Installation .. 2-2
UNIX/Linux Installation ... 2-3

Monthly Data Archives ... 2-3
Source Archive .. 2-3
Pre-built Shared Library Objects (by Platform) ... 2-3
Install CorrectAddress from the UNIX DVD ... 2-4

CHAPTER 3 - REGISTERING THE SOFTWARE .. 3-1
Manual Windows Registration (Windows) .. 3-1
UNIX Registration .. 3-1

CHAPTER 4 - BEFORE STARTING .. 4-1
About Shared Objects ... 4-1
Available UNIX OS and compilers ... 4-1
Running the Builder ... 4-1
Setting Up System Configuration .. 4-2
Building Shared Objects .. 4-2
Running Demo Programs on UNIX-Based Systems ... 4-3

Demo Files ... 4-3
 INI file format .. 4-4

CHAPTER 5 - APPLICATION PROGRAMMING INTERFACE (API) 5-1
Main Functions ... 5-1
Geocoding Functions .. 5-2
Auxiliary/Wrapper Functions .. 5-3
Function Specifications ... 5-4
Calling CorrectAddress from C ... 5-57
Calling CorrectAddress from .NET ... 5-57

Calling CorrectAddress from C# .. 5-57
Calling CorrectAddress from VB.NET .. 5-57

Calling CorrectAddress from Java ... 5-57
Calling CorrectAddress from PERL ... 5-57

Windows Systems ... 5-57
UNIX/Linux Systems .. 5-58

Calling CorrectAddress from RUBY .. 5-58
Ruby Wrappers for CorrectAddress .. 5-58

Calling CorrectAddress from PHP .. 5-61
Windows Systems ... 5-61
UNIX/Linux Systems .. 5-61

Interfacing CorrectAddress via Lawson ... 5-62
COBOL 5-62
Java 5-63
Updating CorrectAddress on Lawson Systems .. 5-64

Interfacing CorrectAddress via Oracle .. 5-64

Interfacing CorrectAddress via Microsoft SQL Server ... 5-64
Interfacing CorrectAddress via MySQL .. 5-65
Interfacing CorrectAddress via PostgreSQL .. 5-69
Interfacing CorrectAddress via DB2 ... 5-71

CHAPTER 6 - CORRECTADDRESS GRAPHICAL USER INTERFACE (GUI) 6-1
Changing Your Setup Information ... 6-1
Using the Correction Utility .. 6-3

Show Additional Input Fields ... 6-4
Search Options .. 6-5
Display Code Descriptions ... 6-6
Address codes ... 6-6
Return codes .. 6-6
Error codes .. 6-6
Geocodes .. 6-6
Delivery Point Validation (DPV) codes…………………………………………………………………………………………………..6-7
LACS Code ... 6-8
Auto Complete .. 6-8

Using the City/Zip Finder ... 6-9
Using the Batch Processor Wizard .. 6-10

Source Connect ... 6-11
Batch Properties .. 6-13
Configuration Options ... 6-13
Destination Data Type ... 6-14
Destination Connect ... 6-15
Start Batch .. 6-15

Using the SQL Generator .. 6-18

CHAPTER 7 - TROUBLESHOOTING .. 7-1
General Troubleshooting Issues ... 7-1
Platform-Specific Issues .. 7-1

AIX-Specific Issues .. 7-1
Linux-Specific Issues ... 7-1
Linux IBM PowerPC-Specific Issues ... 7-1
Solaris-Specific Issues ... 7-1

Language-Specific Issues ... 7-4
Java-Specific Issues .. 7-4
Perl-Specific Issues ... 7-6
PHP-Specific Issues ... 7-6
SQL-Specific Issues ... 7-6

APPENDIX A - PS FORM 3553 ... A-1

APPENDIX B - GLOSSARY OF POSTAL TERMS .. B-1

APPENDIX C - RETURN CODES AND ERROR CODES .. C-1
USPS Return Codes ... C-1
USPS Error Codes .. C-2
Canada Post Return Codes ... C-5
Canada Post Error Codes .. C-6

APPENDIX D - LISTING OF CORRECTADDRESS DATA FILES D-1

Standard...D-1
Add-ons..D-1

APPENDIX E - POSTAL DISCOUNT RATES.. E-1

APPENDIX F - RESULTS RECORD LAYOUT .. F-1

U.S. Results Layout.. F-1
Canadian Results Layout .. F-2

APPENDIX G - BATCH PROCESSOR CONFIGURATION .. G-1

PROCESSOR CONFIGURATION FILE..G-1
BATCH JOB CONFIGURATION FILES ..G-2
ENABLING RUNCABATCH SUPPORT FOR CANADA DATA..G-7

APPENDIX H - GEOCODING .. H-1
Geocoding Error Codes / Footnotes ...H-1
Geocoding Conversion...H-1

APPENDIX I - CUSTOM OPTIONS ... I-1

APPENDIX J - DELIVERY POINT VALIDATION (DPV™)... J-1
Delivery Point Validation Indicators ...J-1
Delivery Point Validation (DPV) Confirmation Indicator ..J1
Delivery Point Validation (DPV) CMRA Indicator..J-2
Delivery Point Validation (DPV) False Positive Indicator...J-2
Delivery Point Validation (DPV) NO-STAT INDICATOR..J-2
Description of Delivery Point Validation (DPV) Footnotes ..J-3
Description of Delivery Point Validation (DPV) No-Stat Reason code..J-3
Delivery Point Validation (DPV) Vacant Indicator ..J-4
Delivery Point Validation (DPV) PBSA Indicator...J-4
Delivery Point Validation (DPV) Drop Indicator...J-4
Delivery Point Validation (DPV) Throwback Indicator..J-4
Delivery Point Validation (DPV) Non-delivery Flag..J-5
Non-delivery day value.............................J-5
Delivery Point Validation (DPV) No secure location..J-5
Delivery Point Validation (DPV) Door not accessible...J-5
Delivery Point Validation (DPV) Enhanced return codes...J-6

APPENDIX K - LACS LINK™... K-1

LACSLink™ Return Codes ..K-1

APPENDIX L - RESIDENTIAL DELIVERY INDICATOR (RDITM)L-1

APPENDIX M - SUITELINK™ .. M-1

Page 1-1

Chapter 1 - Introduction
CorrectAddress® is a United States Postal Service® CASS Certified™ and Canada Post SERP-certified address correction,
address verification and standardization software solution that enables users to cleanse, verify, and standardize their
addresses, both in real-time and batch mode. Designed to overcome a significant degree of variation, fix misspellings and
erroneous information, fill in omitted components and normalize incorrect formatting, CorrectAddress will easily manage
vast quantities of data while exhibiting outstanding speed and accuracy.

Address verification (U.S.A. and Canada)

Advanced name and address parsing

Address standardization

Recognition of addresses of major corporations

ZIP® correction

ZIP+4® Code appending

DPVTM (Delivery Point Validation) for USA and PoC (Point of Call) verification for Canada

LOT (Line of Travel) coding

LACS
Link™(Locatable Address Conversion System)

Suite
Link™ coding

Delivery point bar coding with Postnet barcode font included

Carrier route codes

Support for FIPS codes

Geocoding Add-on

Merge-Purge and Deduplication Add-on

CorrectAddress is a powerful and accurate, multi-platform, multi-user solution that fits a variety of development
frameworks and production environments. Intuitive APIs allow programmers to plug address verification and address
standardization functionality into existing enterprise applications, such as point-of-sale, screening and payroll services,
customer management and order tracking just to name a few. The product can be automated for daily or weekly, address
correction, batch jobs or it can handle interactive address correction.

Powered by Experian’s advanced fuzzy searching and matching engine, CorrectAddress delivers unsurpassed address
correction speed and accuracy, as compared to standard address handling methodologies. The accuracy is further
enhanced as Experian regularly sends out updates when the postal data is changed.

CorrectAddress will save you money by correcting, parsing, and standardizing every address in your database. It also
adds the Carrier Route, LOT, ZIP+4 and Delivery Point Barcodes (DPBC) to every deliverable address.

CorrectAddress easily integrates into many platforms including Microsoft® Windows®, Linux®, Sun Solaris®, AIX.
CorrectAddress seamlessly integrates with SQL Server, Oracle®, DB2®, TeraData®, Sybase®, MySQL, PostgreSQL, Progress
and other commercially available database systems. In addition it comes with a set of APIs that enable applications to call
CorrectAddress® from programming environments like Java, VB.NET, ASP, ASP.NET, C#, C/C++, PHP, Perl, COBOL, SQL,
PowerBuilder, etc.

Page 1-2

 NEW AND IMPROVED IN VERSION 10.0

The latest and most comprehensive release of CorrectAddress has met all requirements and passed all tests administered
by the United States Postal Service to maintain CASS Certification for Windows, Linux and UNIX-based platforms. The
product is CASS Certified for Cycle N (2023-05).

The new release contains CASS Cycle O updates.

A comprehensive and advanced installation wizard

 PO Box™ Only Delivery Zones

 5-Digit ZIP Validation

 DPV® Flags updates

 R777/R779 Phantom Route Matching

 PBSA – PO Box Street Address Identifier

 CMRA – PMB Identifier & DPV® Confirmation

 Single Trailing Alpha on a Primary Number

 Deliverable Street / Highrise Default improved matching

 SuiteLink® matching improvements

 Military Addressing

 Cross State Addresses

 TotalDPS

 Informed Addressing

Software developers can expect:

Simple and elegant Application Programming Interfaces (API)

API - Support for all versions of .NET framework

 GUI and Batch - Support for .NET 4.8

Support for of Microsoft SQL Server

The availability of SQL Server Integration Services (SSIS) components.

Pre-built binary modules for 32- and 64-bit UNIX platforms. Main supported platforms - IBM AIX 64 bit 7.2, Ubuntu
20.04, Sun Solaris 64bit (Sparc) 11.4, CentOS 7 - latest version.

Support for Windows 32-bit and 64-bit operating systems. Windows server: Windows Server 2016, Windows
Server 2019 (Main Supported Platform), Windows Server 2022 . Windows Desktop: Windows 10 – latest version
(Main Supported Platform), Windows 11 – latest version.

Software Development Kits (SDKs) available for C/C++, C#, VB.NET, Visual Basic, Java, SQL Server (T-SQL), Oracle
(PL/SQL), MySQL, DB2, Perl, PHP, COBOL and a variety of other languages and frameworks.

Functional library is entirely independent of the postal data and does not require to be updated monthly

Also available:

CorrectAddress® Plus – Perform data de-duplication and merge/purge operations in conjunction with address validation
processes.

Geocoder Add-on-– Enhance your addresses with latitude, longitude, Census tract, block, FIPS state, county, congressional

Page 1-2

district codes, and statistical area information.

Residental Delivery Indicator (RDI™) – The Residential Delivery Indicator (RDI™) add-on enables users to determine
whether a given address is classified as a residential or a business address. The RDI process may be run directly or as part
of a standard address lookup. In order to obtain RDI data, users need to sign a license agreement with the USPS. Once the
agreement is signed and the fee is paid, the USPS will start shipping monthly data updates. See Appendix L for more
details.

Page 2-1

Chapter 2 - Installation

 SYSTEM REQUIREMENTS

OS:

Windows Server
 Windows Server 2016
 Windows Server 2019 (Main Supported Platform)
 Windows Server 2022
Windows Desktop
 Windows 10 – latest version (Main Supported Platform)
 Windows 11 – latest version
Unix/Linux
 Sun Solaris 64bit (Sparc) 11.4
 IBM AIX 64 bit 7.2
 CentOS 7 - latest version
 Ubuntu 20.04

Disk Space 4 GB+

Memory 2 GB+

Data files arrive monthly and need to be copied over the previous month’s files to stay up to
date.

Unlike earlier versions of the product, v10.0 does not require users to replace the library file
with every data update.

Page 2-1

Page 2-2

 WINDOWS INSTALLATION

Prior to updating a previously installed version of CorrectAddress, make sure that all
instances of the program are closed, and that no applications are using the library.

1. You will be prompted to choose a directory for installation; the default directory name is Program
Files\Intelligent Search Technology\CorrectAddress.

2. The install will then place the DLL used with the GUI in your system32 directory and copy the program itself into
the directory you specified. A shortcut to the GUI will be placed in your Start Menu under Program
Files\Intelligent Search Technology.

3. Data files will be copied into the \Data subdirectory. The installation will create an initialization file
(CorrectA.ini) in your \system32 directory containing the location of the data files; this is vital for the program
to function properly. If you ever change the location of the data files, you may go to ToolsOptions and
modify the Data Path Settings configuration, or simply modify the .ini manually

4. To uninstall CorrectAddress, use the Windows Control Panel to Add/Remove Programs and select
CorrectAddress for removal.

C H A P T E R 2 - R E G I S T E R I N G T H E S O F T W A R E

 UNIX/LINUX INSTALLATION

The files involved in CorrectAddress v10.0 installation on a UNIX machine are:

CorrectAddressData.zip

canada.zip (Canada Post installation disk only)

 Available upon request

libCorrectA.so

Unlike earlier versions of CorrectAddress, v9.0 and later do not require monthly shared object
updates. Once the shared object or library is in place, it may be used in combination with any
subsequent postal data set.

INSTALL CORRECTADDRESS FROM THE UNIX D VD

MONTHLY D ATA ARCHIVES

SOURCE ARCHIVE

PRE- BUILT SHARED L IBRAR Y OBJECTS (BY PLATFO RM)

Page 2-2

Page 2-3

Using pre-built shared objects (PREFERRED):

1. Copy contents of all disks into a temporary data directory on the UNIX machine.

2. Extract contents of all data archives into the data directory (e.g., /IstCorrectAddress/Data)

3. Extract the shared object (libCorrectA.so) from <platform>/libCorrectA.zip (e.g., linux32/libCorrectA.zip) to
your local machine.

Using source archive:

The following procedure is optional and should only be followed by users who:

Run CorrectAddress on platforms for which no pre-built shared objects are shipped

Wish to custom compile their libraries to include platform-specific optimization flags

Wish to compile custom wrappers for PERL or PHP

1. Copy contents of all disks into a temporary data directory on the UNIX machine.

2. Extract contents of source_v90.zip into the source directory (e.g., /IstCorrectAddress)

3. Extract contents of all data archives into the data directory (e.g., /IstCorrectAddress/Data)

4. Build the shared object as described in the Shared Objects on Page 4-2.

By default, the shared object will look for data files in /IstCorrectAddress/Data directory. To override default data path
settings, set CA_DATA environment variable accordingly: export CA_DATA=/some_dir/Data.

If Canada Post data is installed, by default, the shared object will look for data files in /IstCorrectAddress/DataCanada
directory. To override default data path settings, set CA_DATA_CANADA environment variable accordingly: export
CA_DATA_CANADA=/some_dir/DataCanada.

Page 3-1

Chapter 3 - Registering the Software
For Windows installations, a license file istca.lic must reside in the same directory as the CorrectAddress library
(CorrectA.dll). This file is specific to the machine that the library is running on. Generating a license file entails registering
the software with Experian.

 MANUAL WINDOWS REGISTRATION (WINDOWS)

On Windows, registration and generation of the license file is performed through the Windows GUI.

To activate Windows registration, run C:\Program Files\Intelligent Search
Technology\CorrectAddress\CorrectGUI.exe program, or StartAll Programs
CorrectAddress.

In the case where online registration is not possible because you do not have an internet connection or have firewall
limitations, your registration form will indicate that you must register manually after clicking on the Register button.

A 9-digit Support Code number will be provided to you as shown below. It is highly recommended that you write this
number down.

Contact Experian and relay the Support Code number that was returned to you. A program-unlocking key will be supplied
to you to enter that will complete your registration.

 UNIX REGISTRATION

On UNIX/Linux, product registration is performed at program load time. No special license files are required.

Page 4-1

Chapter 4 -Before Starting

 ABOUT SHARED OBJECTS

The following section describes how to create port and test CorrectAddress shared objects (dynamic libraries) on UNIX-
based platforms. Windows users and UNIX users who utilize pre-built shared objects should skip this section.

You must have a Java Runtime Environment or JDK installed as well as a C compiler to create a
shared object. This is available upon request.

 AVAILABLE UNIX OS AND COMPILERS
To build CorrectAddress we need your choice about Operating System and Compiler in order to generate the default
compiler and linker commands.
Generally, the up-to-date choice about compiler is gcc or clang which are available on almost all UNIX systems.
We offer default compiler and linker commands for these Operating Systems (the version of the compilers is the
minimum required; later versions should work as well):

 AIX
 gcc/g++
 (GCC) 8.3.0
 xlcclang/xlcclang++

IBM XL
C/C++ for AIX, V16.1.0

 Solaris SPARC
 gcc/g++

(GCC) 9.5.0

 Linux
 gcc/g++

(GCC) 4.8.5
 clang/clang++

version 10.0.0

The buildLib tool will automatically generate default commands for C compilation, C++ compilation and linking which
are needed to build the CorrectAddress library.
You may also provide your own compiler and linker commands based on your needs. The only requirement is to use
compilers which support at least the C++11 standard
like gcc/g++, clang/clang++, xlclang/xlclang++(AIX).

 RUNNING THE BUILDER

Run the Library Builder by executing the following command:

This will start a configuration script. If you want to use a previously saved configuration file (conf.txt) in an automated
environment, execute java –jar BuildLibAuto.jar instead. Make sure that the configuration file is located in the same
directory as the .jar file.

java –jar BuildLib.jar

Page 4-2

 SETTING UP SYSTEM CONFIGURATION

The first time you run this program it will ask you for your environment specifications, including:

Operating system

C\C++ compiler name

Type of shared object (standard or with Java support)

If you include Java support, you will need to supply the paths on your system to your JDK include directories. JDK (if not
present already) must be installed prior to this step. Within the default Java directory created by JDK there is a directory
called include. This is the path you specify when prompted to.

Within that include directory should be another directory that is platform specific; the name will refer to your operating
system. For example, on a Windows based machine the directory would be named win32. This is the path you specify if
prompted to enter the location of your Java include/platform directory.

After a configuration is created you may use it in future installations.

 BUILDING SHARED OBJECTS

After your initial configuration you will be asked if you want to change this configuration. Select NO if there are no
changes or select YES and change the previous configuration.

Next BuildLib will automatically generate C compile command, C++ compile command and a linker command based on
your settings for Operating system and Compiler.
After that you will be asked if you need to change any of the commands generated. If you don't need to do this choose 'n'.
If you need to provide your own compiler and linker commands choose 'y'. After that you will be asked which exactly
command you need to change.
You have to choose "1" to change the C compile command, "2" to change the C++ compile command and "3" to change
the linker command.
You can also choose "4" in case you need to reset the commands to the default ones.
The process can be repeated as many times as you need until you answer 'n' to the question
"Do you want to make changes to the commands or reset to the default ones?".

After the program completes you will be asked if you wish to clean up the object files. Select YES unless you are including
PHP, PERL, MySQL or PostgreSQL support as you will need them to create these special modules.

The shared object is now built and ready to be registered and used with your applications.

enter the full path to your Java include directory:

==>

Page 4-3

 RUNNING DEMO PROGRAMS ON UNIX-BASED SYSTEMS

CorrectAddress comes with a number of utilities that demonstrate its functionality. They are described in more detail in
Demo Files on Page 4-2. To create one or more of the demo programs, type:

For example, to create a program named CADemo using a gcc compiler,

type: You can now execute CADemo from the shell prompt.

The -pthread flag is needed to include the POSIX Thread library.

The -m64 flag switches on the 64 bit mode, it can also be -maix64 for gcc/AIX or -q64 for
xlclang/AIX.

CADemoCorrectA.c – This file contains a sample execution of the product; read through it to check the syntax used when
making calls to the CorrectA function. This example will take in a misspelled version of 445 Hamilton Ave Ste 608, White
Plains NY 10601 and correct it to the appropriate spelling and assign a four digit add-on to the ZIP code. This will be
displayed upon running. Other info is returned but will not be displayed by print statements. Explanations of parameters
are given in the section titled: Calling CorrectA from C.

CallCorrectA.c – This is a simple interactive demo. The user is asked to enter delivery line 1, line 2 and last line
(city/state/ZIP). The program returns corrected result onto the screen.

CADemoFindCityCounty.c – This is a demo example that returns city/county information for a particular ZIP code.
Explanations of parameters are given in the section titled: Calling CorrectA from C.

CADemoFindZipCity.c – This demo returns all ZIP files that belong to particular city in a state. Explanations of parameters
are given in the section titled: Calling CorrectA from C.

CADemoLOTUtility.c – This example shows how Line of Travel information is returned based on ZIP and carrier route
information. Explanations of parameters are given in the section titled: Calling CorrectA from C.

CADemoParseAddress.c – This demo calls the ParseAddress function that splits address information into fields, such as
street number, street name, suffix, city, state, ZIP etc.

CallFileImport.c – A demo example that can take a text file (delimited or fixed width) and return a text file with corrected
values in it. The program takes the path of an .ini file as input. The .ini file information is structured as follows and a sample
.ini file is included (called CAImport.ini), as well as a sample piece of data in the file testCA.txt. To better understand the
syntax, open the example CAImport.ini file, and compare as you read through the instructions below.

$CC -pthread -m64 –o $PROGRAM_NAME $DEMO_FILENAME $SHARED_OBJECT_NAME

gcc -pthread -m64 –o CADemo CADemo.c ./libCorrectA.so

DEMO FILES

Page 4-4

The schema below is for UNIX. Refer to Appendix G for description of a Windows batch configuration file, G :

The thread section sets up how the data is processed. For each thread, the following information needs to be specified
inside this section: name of the thread, starting index (1-counted), ending index, where the update ini file should be, where
the cancel ini file should be, and where the error ini file is. If you want a thread to process all of the data in the input file,
specify 0 as the start and end indexes.

The Options section can the following options specified:

Geo: True | False <Turn On/Off Geocoding> By default, False

NoMatch: True | False <Output/Not No Match Records> By default, True

MixedCase: True | False <Ouput Mixed/Upper Case> By default, True

PS3553 TEXT: True | False <Generate a text PS3553Form> By default, False

PS3553 XML: True | False <Generate an XML PS3553Form> By default, False

Codes: <Add custom option flags (See Appendix I)> By default, blank

In the AddressValues section, you can place more than one field in a field type (each on a separate line). This means that,
for instance, the field type Dline1 contains the street address (without city/state/zip). If you had the field’s streetnumber,
predirectional, streetname, postdirectional, and streetsuffix and they contained the pieces of the street address that their
names imply, then this part of the ini file would look like this.

INI FILE FORMAT

[CorrectAddress Configuration File]

[THREAD]

<threadname>

<startindex>

<endindex>

UpdateProcessPath: <filepath>

CancelProcessPath: <filepath>

ErrorLogPath: <filepath>

[INPUT]
Type: Text
Input: <filepath>
Format: Delimited or FixedWidth
[Delimited Case:
TEXTDELIM: "
DELIM: ,

]

ColHeader: True
Cols: num Columns

[Options]

[Output]
same as input

[AddressValues]

[<field type(firm,urbanization,dline1,dline2,and lastline)>]

Page 4-5

In the code, this takes these fields in order and concatenates them into one string that it then uses as the input street
address. This is useful when your file's information is split into separate fields and you have no pure field with street
address information in it.

This process continues down until you reach…

In the [Output] section, you can return only certain fields.

[DLINE1]

streetnumber

predirectional

streetname

postdirectional

streetsuffix

[END ADDRESSVALUES]
[PS3553]
True | False <generate form PS3553>

/***\

Page 4-6

The names of the CorrectAddress fields you can return, and their values are as follows:

Firm Firm name

Urbanization Urbanization name (Puerto Rico Only)

Dline1 Primary delivery address (i.e. 445 Hamilton Ave Suite 608)

Dline2 Secondary delivery address (only used in dual addressing, usually blank)

LastLine Contains city, state, and zip (i.e. White Plains, NY 10601-2306)

Streetnum Street number

Addon Four digit add-on to zip code

Checkdigit Checkdigit sum used with DPC

DPC Delivery Point Code, used for creating bar codes

City City name

County County name

Countynum County number

Croute Carrier route

LACS Locatable Address Conversion System Indicator

 PMB Any private mail box designation

 Aptname 4-character apartment abbreviation (i.e. STE, APT, etc.)

Aptnum Apartment number

State State abbreviation

ZIP Five digit zip code

ZIP-Addon 5-digit zip code + four-digit add-on

Predir Pre-directional (i.e. 445 N Hamilton Ave)

Postdir Post-directional (i.e. 445 Hamilton Ave S)

Streetname Street name (445 Hamilton Ave)

Suffix Street suffix (445 Hamilton Ave)

Errcode Error code string

Retcode Return code

Additionally DPV, LACS, and Geocoding output fields are specified in their respective sections.

Page 5-1

Chapter 5 - Application Programming Interface (API)

 MAIN FUNCTIONS

The following is a list of currently supported CorrectAddress API functions.

Function Description
CorrectA Validates and CASS-standardizes input address with Delivery Point Validation (DPV) and

LACSLink™ processing.

All near matches are returned when applicable.

CorrectAWorld Validates and CASS-standardizes input address with Delivery Point Validation (DPV) and
LACSLink™ processing.

Verifies and corrects Canadian addresses.

All near matches are returned when applicable.

CorrectACASS Validates and CASS-standardizes input address with Delivery Point Validation (DPV) and
LACSLink™ processing.

All near matches are returned when applicable.

Includes path to a text file to store address statistics for generating CASS report (Postal Form
PS3553, see Appendix A). This function is used in conjunction with PrintPSForm3553.

capconv Converts a string to mixed (“Proper”) case format.
DPCutility Accepts street number, unit number and 9-digit ZIP code as input.

Creates Delivery Point Code (DPC) and Checkdigit values.

FindCityCounty Accepts ZIP code as input.

Returns preferred city name, state, county information.

FindCityState Accepts ZIP code as input.

Returns all valid mailing city names, state, county information.

FindStateCounties Accepts state abbreviation as input.

Returns all county names and numbers within the state.

FindZipCity Accepts city name and state abbreviation as input.

Returns list of all ZIP codes for the given city/state area.

GetBuildDate Retrieves CorrectAddress USPS data build time.
GetBuildDateCanada Retrieves CorrectAddress Canada Post data build time.
GetCAVersion Retrieves CorrectAddress version number.

getMuniProv Accepts Canadian postal code as input.

Returns municipality and province information.

Page 5-2

Function Description
isBusinessZip Accepts 9-digit ZIP code (with or without 2-digit Delivery Point Code (DPC)) and the path to

the RDI lookup tables. (See Appendix L)

Returns residential delivery indicator.

LOTutility Accepts 9-digit ZIP code, Delivery Point Code (DPC) and carrier route number.

Returns Line of Travel (LOT) information.

ParseAddress Breaks up input address into individual parts. Performs basic standardization.
PrintPSForm3553 Accepts path to file containing statistics generated by CorrectACASS.

Creates CASS report (Postal Form PS3553) in text format.

RunCABatch Accepts configuration file as input (see Appendix G)

Runs a batch of addresses through CorrectA function according to specifications in the
configuration file.

strerrorCA Accepts two-character error code as input.

Returns plain text description of the error code.

GetErrcodeString Same as strerrorCA. Supports .NET managed code.
unloadData Explicitly unloads postal data from memory.
freeHashTables Free global hash tables

 GEOCODING FUNCTIONS

The following is a list of functions used by the Geocoder add-on.

Function Description

TigerCA Validates, CASS-standardizes and geo-codes input address with Delivery Point Validation
(DPV) and LACSLink™ processing.

All near matches are returned when applicable.

GeoCode Accepts 9-digit ZIP code as input.

Returns end-points of latitude and longitude ranges and other geo-coding information based
on ZIP+4 area.

getCentroid Accepts ZIP code as input.

Returns latitude and longitude coordinates of ZIP area centroids.

Page 5-2

Page 5-3

 AUXILIARY/WRAPPER FUNCTIONS

The following is a list of auxiliary CorrectAddress functions.

Function Description

db2CorrectA CorrectA wrapper function for integration with DB2 database systems.

db2TigerCA TigerCA wrapper function for integration with DB2 database systems.

CorrectAcat CorrectA wrapper function for integration with environments that prohibit long function
argument lists. Excludes Stringaddress parameter from the output.

CorrectAcat2 CorrectA wrapper function for integration with environments that prohibit long function
argument lists. Includes Stringaddress parameter in the output.

CorrectACASSOracle CorrectACASS wrapper function for integration with Oracle database systems.

CorrectACobol CorrectA wrapper function for integration with environments that do not allow integer return
codes.

Includes optional flag to return secondary information on delivery line 2.

CorrectAN CorrectA variant function that allows setting the maximum number of results per address.

CorrectAOracle CorrectAWorld wrapper function for integration with Oracle database systems.
Includes optional flag to return secondary information on delivery line 2.

FindCityCountyCobol FindCityCounty wrapper function for integration with environments that do not allow integer
return codes.

TigerCAcat TigerCA wrapper function for integration with environments that prohibit long function
argument lists. Excludes Stringaddress parameter from the output.

TigerCAcat2 TigerCA wrapper function for integration with environments that prohibit long function
argument lists. Includes Stringaddress parameter in the output.

TigerCAN TigerCA variant function that allows setting the maximum number of results per address.

TigerCAOracle TigerCA wrapper function for integration with Oracle database systems.

Page 5-3

Page 5-6

 FUNCTION SPECIFICATIONS

 C O R R E C T A

Description

Validates and CASS-standardizes input address with Delivery Point Validation (DPV) and LACSLink™ processing.

All near matches are returned when applicable.

C prototype

int CorrectA(char inputAddress[194],
char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[200][194],
char strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
 errcode

(OUTPUT) error codes
 firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1
 (OUTPUT) delivery line 1 information
Dline2
 (OUTPUT) delivery line 2 information
LastLine

(OUTPUT) city, state, ZIP information

Page 5-6

Stringaddress
(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)

DPC
(OUTPUT) Delivery point code

Checkdigit
(OUTPUT) Delivery point check digit

Cityname
(OUTPUT) City name

stcode
(OUTPUT) State abbreviation

zip
(OUTPUT) 5-digit ZIP code

addon
 (OUTPUT) +4 extension for the ZIP code
croute

(OUTPUT) carrier route code and number
LACS

(OUTPUT) LACS code
LOTsequence

(OUTPUT) Line of Travel sequence number
LOTcode
 (OUTPUT) Line of travel sequence code
PMB
 (OUTPUT) Private mail box number
results
 (OUTPUT) buffer containing postal records (see Appendix F for layout details)
 strnum
 (OUTPUT) primary (street) number
 secname
 (OUTPUT) secondary (unit) designator
 secnum

(OUTPUT) secondary (unit) number
countyname

(OUTPUT) county name
countynum

(OUTPUT) countynum

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

Page 5-6

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, MySQL, PERL, PHP, PostgreSQL, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

Page 5-8

 C O RR E C T A W O R L D

Description

Validates and CASS-standardizes input address with Delivery Point Validation (DPV) and LACSLink™ processing.

Verifies and corrects Canadian addresses.

All near matches are returned when applicable.

CorrectAWorld is a modified version of the CorrectA API that facilitates address matching against both U.S.
and foreign-address databases. By default CorrectAWorld will attempt to determine the country database that
is appropriate for the given input based on address keywords and formatting. Users may also specify their
desired search database by passing the appropriate country flag in the errcode field (see Remarks below).

C prototype

int CorrectAWorld(char inputAddress[194],

char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[200][194], char
strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
 errcode

(OUTPUT) error codes
 firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1

(OUTPUT) delivery line 1 information

Page 5-8

Dline2
(OUTPUT) delivery line 2 information

LastLine

(OUTPUT) city, state, ZIP information (municipality, province, postal code for Canada)
Stringaddress

(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-K)
DPC

(OUTPUT) Delivery point code
Checkdigit

(OUTPUT) Delivery point check digit
Cityname

(OUTPUT) City name
Stcode

(OUTPUT) State abbreviation
Zip

(OUTPUT) 5-digit ZIP code
Addon

(OUTPUT) +4 extension for the ZIP code
Croute

(OUTPUT) carrier route code and number
LACS

(OUTPUT) LACS code
LOTsequence

(OUTPUT) Line of Travel sequence number
LOTcode

(OUTPUT) Line of travel sequence code
PMB

(OUTPUT) Private mail box number
results

(OUTPUT) buffer containing postal records (see Appendix F for layout details)
strnum

(OUTPUT) primary (street) number
secname

(OUTPUT) secondary (unit) designator
secnum

(OUTPUT) secondary (unit) number
countyname

(OUTPUT) county name
countynum

(OUTPUT) countynum

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

Page 5-9

By default, output address is returned in capital letters. Mixed case output switch and other custom options are
described in Appendix I.

Users may specify a country-specific search database by passing the appropriate flag in the errcode field:

"Us" – Search only the USPS database (United States and territories)
"Cd" – Search only the Canadian address database

The results string may contain multiple records, but users must check the errcode string to determine the record size
and layout, which is different for each country. See Appendix C for information about country-specific error codes.
See Appendix F for information about country-specific record formats.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, PHP, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

 C O R R E C T A C A S S

Description

Validates and CASS-standardizes input address with Delivery Point Validation (DPV) and LACSLink™ processing.

All near matches are returned when applicable.

Includes path to a text file to store address statistics for generating CASS report (Postal Form PS3553, see
Appendix A). This function is used in conjunction with PrintPSForm3553.

C prototype

int CorrectACASS(char inputAddress[194],

char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[200][194], char
strnum[10],
char secname[4],
char secnum[8],

Page 5-9

char countyname[25],
char countynum[3],
char path[256]);

Page 5-10

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

inputAddress
input address, formatted according to postal specifications (see Remarks below)

sentLen
input address length (see Remarks below)

 errcode
 (OUTPUT) error codes
 firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1
 (OUTPUT) delivery line 1 information
Dline2
 (OUTPUT) delivery line 2 information
LastLine

(OUTPUT) city, state, ZIP information
Stringaddress

(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)
DPC

(OUTPUT) Delivery point code
Checkdigit

(OUTPUT) Delivery point check digit
Cityname
 (OUTPUT) City name
Stcode
 (OUTPUT) State abbreviation
zip

(OUTPUT) 5-digit ZIP code
addon
 (OUTPUT) +4 extension for the ZIP code
croute
 (OUTPUT) carrier route code and number
LACS

(OUTPUT) LACS code
LOTsequence

(OUTPUT) Line of Travel sequence number
LOTcode
 (OUTPUT) Line of travel sequence code
PMB
 (OUTPUT) Private mail box number
results
 (OUTPUT) buffer containing postal records (see Appendix F for layout details)
strnum
 (OUTPUT) primary (street) number
secname
 (OUTPUT) secondary (unit) designator
secnum

(OUTPUT) secondary (unit) number
countyname

(OUTPUT) county name
countynum

(OUTPUT) countynum
path

(INPUT) location of a text file to store address statistics for generating CASS report

Page 5-11

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

CorrectAddress Graphical User Interface (see Chapter 6) is normally used for batch database jobs and can be used to
create a facsimile copy of PS Form 3553 on your default printer. PS Form 3553 can be used as proof of valid
addresses when approaching the United States Postal Service for a rate discount on bulk mail. In the case that you
are integrating CorrectAddress into an application and not using the GUI for your batch jobs, the function
CorrectACASS allows you to keep track of your records and create a text file with a facsimile PS Form 3553 that you
can later print out.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, PERL, PostgreSQL, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

Page 5-12

 C A P C O N V

Description

Converts a string to mixed (“Proper”) case format.

C prototype

int capconv(char funct[9],
char namein[80],
char nameout[80]);

Parameters

funct namein nameout

Return codes

input service name (see Remarks below) input string

output string

Remarks

Examples

Return code: 0

All input parameters must be initialized prior to calling the function. Input

service name must be set to "CADLL " (note the spaces)

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, Oracle, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

Page 5-13

 D P C U T I L I T Y

Description

Accepts street number, unit number and 9-digit ZIP code as input.

Creates Delivery Point Code (DPC) and Checkdigit values

C prototype

int DPCutility(char DPC[2],
char Checkdigit[1],
char strnum[10],
char secnum[8],
int secflag,
char zipcode[11]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
 DPC

(OUTPUT) delivery point code
Checkdigit

(OUTPUT) delivery point check digit
strnum
 (INPUT) primary (street) number
 secnum
 (INPUT) secondary (unit) number
secflag

(INPUT) address type flag (see Remarks below)
Zipcode
 (INPUT) ZIP code with +4 addon

Return codes

-66 – out of memory
All other codes: DPC generation completed successfully.

Remarks

All input parameters must be initialized prior to calling the function. Address

type flag can be set to one of the following:
1. general delivery address
2. highrise address
3. firm address

Any other value will assume a regular street address.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, VB.NET

Examples for other languages and environments are available upon request.

Page 5-14

 F I N D C I T Y C O U N T Y

Description

Accepts ZIP code as input.

Returns preferred city name, state, county information.

C prototype

int FindCityCounty(char ZIP[5],
char cityname[28],
char state[2],
char countyname[25],
char countynum[3]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

ZIP
input ZIP code

cityname
(OUTPUT) city name

state
(OUTPUT) state abbreviation

countyname
(OUTPUT) county name

countynum
(OUTPUT) county number

Return codes

0 – completed successfully
-2 – no valid license key
-3 – trial expired
-99 – no matches found

Remarks
All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, MySQL, Oracle, PERL, PHP, Ruby, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

Page 5-15

 F I N D C I T Y S T A T E

Description

Accepts ZIP code as input.

Returns all valid mailing city names, state, county information.

C prototype

int FindCityState(char ZIP[5],
char results[50][55]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix

ZIP
input ZIP code

results
(OUTPUT) array of up to 50 valid mailing city names, state abbreviations and county names.

Return codes

Return code value is the total number of valid mailing city names found.

Remarks
All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, Oracle, VB.NET

Examples for other languages and environments are available upon request.

Page 5-16

 F I N D S T A T E C O U N T I E S

Description

Accepts state abbreviation as input.

Returns all county names and numbers within the state.

C prototype

int FindStateCounties(char state[2],
char countynames[260][25],
char countynums[260][3]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

state
input state abbreviation

countynames
(OUTPUT) array of up to 260 county names within the given state

countynames
(OUTPUT) county numbers corresponding to county names above

Return codes

Return code value is the total number of county names found.

Remarks
All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, PHP, Ruby, VB.NET

Examples for other languages and environments are available upon request.

Page 5-17

 F I N D Z I P C I T Y

Description

Accepts city name and state abbreviation as input.

Returns list of all ZIP codes for the given city/state area.

C prototype

int FindZipCity(char cityname[28],
char newcityname[28],
char state[2],
char zips[200][5]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
cityname

input city name
newcityname

(OUTPUT) validated city name
state

input state abbreviation
 zips

(OUTPUT) list of all ZIP codes within the given city/state area

Return codes

All input parameters must be initialized prior to calling the function.

Remarks

Return code value is the total number of county names found. Negative
return code indicates invalid license conditions.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, Oracle, PERL, PostgreSQL, PHP, Ruby, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

Page 5-18

 G E T B U I L D D A T E

Description

Retrieves CorrectAddress USPS data build time.

C prototype

int GetBuildDate(char day[2],

char month[2],
char year[4]);

Parameters

day
 (OUTPUT) build day of the month
month

(OUTPUT) build month
Year
 (OUTPUT) build year

Return codes

Return code: 0.

Remarks

All parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, VB.NET

Examples for other languages and environments are available upon request.

Page 5-19

 G E T B U I L D D A T E C A N A D A

Description

Retrieves CorrectAddress Canada Post data build time.

C prototype

int GetBuildDateCanada(char day[2],
char month[2],
char year[4]);

Parameters

day
 (OUTPUT) build day of the month
month

(OUTPUT) build month
Year
 (OUTPUT) build year

Return codes

Return codes:
> 0 – success
< 0 - failure

Remarks

All parameters must be initialized prior to calling the function.

Examples

See examples for GetBuildDate() . Specific examples for this function are available upon request.

Page 5-20

 G E T C A V E R S I O N

Description

Retrieves CorrectAddress version number.

C prototype

int GetCAVersion(char version[30]);

Parameters

version
(OUTPUT) full version number

Return codes

Return code is a numeric representation of the version number.

Remarks
None

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, VB.NET

Examples for other languages and environments are available upon request.

Page 5-21

 G E T M U N I P R O V

Description

Accepts Canadian postal code as input.

Returns municipality and province information.

C prototype

int getMuniProv(char postalcode[6],
char province[2],
char municipality[30]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

postalcode
Canada Post postal code

province
(OUTPUT) province code

municipality
(OUTPUT) municipality name

Return codes

1 – municipality/province combination found
0 – no match found

Remarks

All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, VB.NET

Examples for other languages and environments are available upon request.

Page 5-22

I S B U S I N E S S Z I P

Description

Accepts 9-digit ZIP code (with or without 2-digit Delivery Point Code (DPC)) and the path to the RDI lookup
tables. (See Appendix L)

Returns residential delivery indicator.

C prototype

int isBusinessZip(char zip[11],
int length,
char file9_path[256],
char file11_path[256]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
zip

input 9-digit ZIP+4 code or 11-digit ZIP+4+DPC
length
 input ZIP length (9 or 11)
file9_path

path to 9-digit RDI lookup file
file11_path

path to 11-digit RDI lookup file

Return codes

See Appendix L.

Remarks
All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, Java

Examples for other languages and environments are available upon request.

Page 5-23

 L O T U T I L I T Y

Description

Accepts 9-digit ZIP code, Delivery Point Code (DPC) and carrier route number.

Returns Line of Travel (LOT) information.

C prototype

int LOTutility(char LOTsequence[4],
char LOTcode[1],
char croute[4],
char zipcode[11],
char DPC[2]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

LOTsequence

(OUTPUT) Line of Travel sequence number
LOTcode

(OUTPUT) Line of Travel code
Croute

(INPUT) carrier route number
Zipcode

(INPUT) 9-digit ZIP code
DPC

(INPUT) delivery point code

Return codes

-66 – out of memory
All other codes: LOT generation completed successfully.

Remarks
All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, VB.NET

Examples for other languages and environments are available upon request.

Page 5-24

 P A R S E A D D R E S S

Description

Breaks up input address into individual parts. Performs basic standardization.

C prototype

int ParseAddress(char inputAddress[194],
char sentLen[4],
char strnum[10],
char predir[2],
char strname[28],
char postdir[2],
char strsuffix[4],
char secname[4],
char secnum[8],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char urbanization[28],
char PMB[12]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
 inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen
 input address length (see Remarks below)
strnum

(OUTPUT) primary (street) number
Predir

(OUTPUT) pre-directional abbreviation
Strname

(OUTPUT) street name
postdir

(OUTPUT) post-directional abbreviation
Strsuffix

(OUTPUT) street suffix
Secname

(OUTPUT) secondary (unit) designator
secnum

(OUTPUT) secondary (unit) number
cityname

(OUTPUT) City name
stcode

(OUTPUT) State abbreviation
zip

(OUTPUT) 5-digit ZIP code
addon

(OUTPUT) +4 extension for the ZIP code
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
PMB

(OUTPUT) Private mail box number

Return codes

-66 – out of memory
All other codes: address parsing completed successfully.

Page 5-25

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, Oracle, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

 P R I N T P S F O R M 3 5 5 3

Description

Accepts path to file containing statistics generated by CorrectACASS.

Creates CASS report (Postal Form PS3553) in text format.

C prototype

int PrintPSForm3553(char path[256]);

Parameters

path
input path to the job statistics file generated by CorrectACASS function (null-terminated)

Return codes

1– form generated successfully

0 – unable to generate the form

Remarks

Generates text file named “{statistics_file_name}PS3553.txt” in the directory where the statistics file is located. All input

parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Page 5-25

C, C#, Java, Oracle, PERL, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

Page 5-27

 R U N C A B A T C H

Description

Accepts configuration file as input (see Appendix G).

Runs a batch of addresses through CorrectA function according to specifications in the configuration file.

C prototype

int RunCABatch(char path[256]);

Parameters

path
(INPUT) configuration file containing job settings

Return codes

>=0 – completed successfully
-2 – no valid license key
-3 – trial expired

Remarks

All input parameters must be initialized prior to calling the function.
Configuration file format is provided in Appendix G.

This function takes place of the older ImportFile() routine, which has been deprecated.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C

Examples for other languages and environments are available upon request.

 S T R E R R O R C A

Description

Accepts two-character error code as input.

Returns plain text description of the error code.

C prototype

char *strerrorCA(char errcode[2]);

Page 5-27

Parameters

errcode
(INPUT) U.S. error code

Return codes and error codes

See Appendix C.

Remarks
All input parameters must be initialized prior to calling the function.
This function cannot be used from managed code. For integrations into .NET applications, use
GetErrcodeString() instead.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, Java, Oracle

Examples for other languages and environments are available upon request.

 G E T E R R C O D E S T R I N G

Description

Accepts two-character error code as input.

Returns plain text description of the error code.

C prototype

int GetErrcodeString(const char errcode[2], char errcodedesc[128]);

Parameters

errcode
(INPUT) U.S. error code

errcodedesc
(OUTPUT) U.S. error code description

Return codes and error codes

See Appendix C.

Remarks
All input parameters must be initialized prior to calling the function.
Unlike strerrorCA(), this function supports applications written in managed and unmanaged code.

Examples

Page 5-27

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C#, VB.NET

Examples for other languages and environments are available upon request.

Page 5-28

 U N L O A D D A T A

Description

Explicitly unloads postal data from memory.

C prototype

int unloadData();

Parameters

None

Return codes and error codes

Return code: 1

Remarks

This function can be used in environments that do not explicitly unload the library after the process completes
(e.g., Java). Postal data is loaded into memory on the first call to the library (unless “Zd” flag is set in the code –
See Appendix I) and remains memory-resident for the duration of the process.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Java

Examples for other languages and environments are available upon request.

FREEHASHTABLE

Description

Free global hash tables

C prototype
void freeHashTables();

 Parameters

None

Return codes and error codes
 None

Remarks

Free global hash tables, currently used for RDI data. In case CorrectAddress library has to be unloaded and loaded again this
function needs to be called before unloading the library for avoiding memory leaks. If the application doesn’t unload the library
the function call is not needed.

Examples

Code samples can be found in the \Development kits folder in the CorrectAddress installation directory (\Development directory
on UNIX\Linux distributions). The following examples are currently available for this function:

Page 5-28

Java

Examples for other languages and environments are available upon request.

Page 5-29

 T I G E R C A

Description

Validates, CASS-standardizes and geo-codes input address with Delivery Point Validation (DPV) and LACSLink™
processing.

All near matches are returned when applicable. Verifies and corrects Canadian addresses.

TigerCA is an extension of the CorrectA/CorrectAWorld API with geocoding support. The function will first
perform a search against the USPS database, and if the search fails, will attempt validation against Canada Post
data. Geocoding information is currently only available for addresses in the U.S. No country-specific switches are
available.

C prototype

int TigerCA(char inputAddress[194],
char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[200][194],
char strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3],
char TLID[20][10],
char tigererrcode[30],
char tigerstcode[20][2],
char tigercroute[20][4],
char tigercounty[20][3],
char MiscData[20][1],
char tract[20][6],
char block[20][4],
char fLat[20][11],
char tLat[20][11],
char fLong[20][12],
char tLong[20][12],
char AddonStart[20][4],
char AddonEnd[20][4],
char tigerRet[10]);

Page 5-31

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

inputAddress
input address, formatted according to postal specifications (see Remarks below)

sentLen
input address length (see Remarks below)

 errcode
(OUTPUT) error codes

 firmname
(INPUT/OUTPUT) firm name / recipient

urbanization
(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)

Dline1
(OUTPUT) delivery line 1 information

Dline2
(OUTPUT) delivery line 2 information

 LastLine
(OUTPUT) city, state, ZIP information
(municipality, province, postal code for Canada)

Stringaddress
(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)

DPC
(OUTPUT) Delivery point code

Checkdigit
(OUTPUT) Delivery point check digit

Cityname
 (OUTPUT) City name

Stcode
 (OUTPUT) State abbreviation

zip
 (OUTPUT) 5-digit ZIP code

addon
(OUTPUT) +4 extension for the ZIP code

croute
(OUTPUT) carrier route code and number

LACS
(OUTPUT) LACS code

LOTsequence
(OUTPUT) Line of Travel sequence number

LOTcode
 (OUTPUT) Line of travel sequence code

 PMB
(OUTPUT) Private mail box number

Results

(OUTPUT) buffer containing postal records (see Appendix F for layout details)
strnum

(OUTPUT) primary (street) number

 secname

(OUTPUT) secondary (unit) designator
 secnum

(OUTPUT) secondary (unit) number
countyname

(OUTPUT) county name
countynum

(OUTPUT) countynum
TLID

(OUTPUT) TIGER/Line identification number for use with Census Bureau files
tigererrcode

(OUTPUT) TIGER/Line specific error code (see Appendix H)
tigerstcode

Page 5-31

(OUTPUT) FIPS state code

tigercroute
 (OUTPUT) TIGER/Line carrier route number

tigercounty
(OUTPUT) FIPS county number

MiscData
(OUTPUT) Contains CBSA indicator (5 bytes), followed by FIPS congressional district code (7 bytes) (“exact match
indicator” in the earlier, ZIP+4 level version of the geocoder)

tract
(OUTPUT) Census tract number

block
(OUTPUT) Census block number

fLat
(OUTPUT) Latitude (“from latitude” in the earlier, ZIP+4 level version)

tLat
(OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)

fLong
(OUTPUT) Longitude (“from longitude” in the earlier, ZIP+4 level version)

tLong
(OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)

AddonStart
(OUTPUT) {not used in the rooftop version} (“ZIP+4 start range” in the earlier, ZIP+4 level version)

AddonEnd
(OUTPUT) {not used in the rooftop version}(“ZIP+4 end range” in the earlier, ZIP+4 level version)

 tigerRet
(OUTPUT) Geocoder return code, equal to the number of Census records returned

Return codes and error codes

See Appendices C and H.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

The results string may contain multiple records, but users must check the errcode string to determine the record size
and layout, which is different for each country. See Appendix C for information about country-specific error codes.
See Appendix F for information about country-specific record formats.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, MySQL, PERL, PHP, PostgreSQL, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

Page 5-32

 G E O C O D E
Description

Accepts 9-digit ZIP code as input.

Returns end-points of latitude and longitude ranges and other geo-coding information based on ZIP+4 area.

C prototype

int GeoCode(char zip4[11],
char tigererrcode[30],
char TLID[20][10],
char tigerstcode[20][2],
char tigercroute[20][4],
char tigercounty[20][3],
char MiscData[20][1],
char tract[20][6],
char block[20][4],
char fLat[20][11],
char tLat[20][11],
char fLong[20][12],
char tLong[20][12],
char AddonStart[20][4],
char AddonEnd[20][4]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
zip4

input 9-digit ZIP code
tigererrcode

(OUTPUT) TIGER/Line specific error code (see Appendix H)
TLID

(OUTPUT) TIGER/Line identification number for use with Census Bureau files
tigerstcode

(OUTPUT) FIPS state code
tigercroute

(OUTPUT) TIGER/Line carrier route number
tigercounty

(OUTPUT) FIPS county number
MiscData

(OUTPUT) Contains CBSA indicator (5 bytes), followed by FIPS congressional district code (7 bytes) (“exact match indicator” in the
earlier, ZIP+4 level version of the geocoder)

tract
(OUTPUT) Census tract number

Block
(OUTPUT) Census block number

fLat
(OUTPUT) Latitude (“from latitude” in the earlier, ZIP+4 level version)

tLat
(OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)

fLong
(OUTPUT) Longitude (“from longitude” in the earlier, ZIP+4 level version)

tLong
(OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)

AddonStart
(OUTPUT) {not used in the rooftop version} (“ZIP+4 start range” in the earlier, ZIP+4 level version)

AddonEnd
(OUTPUT) {not used in the rooftop version}(“ZIP+4 end range” in the earlier, ZIP+4 level version)

Page 5-33

Return codes and error codes

Return code is equal to the number of Census records returned.
For error code description, see Appendix H.

Remarks
All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, Oracle, PERL, PostgreSQL, SQL Server (via wrapper), VB.NET

Examples for other languages and environments are available upon request.

 G E T C E N T R O I D
Description

Accepts ZIP code as input.

Returns latitude and longitude coordinates of ZIP area centroids.

C prototype

int getCentroid(char ZIP[5],
char lats[10][11],
char longs[10][12]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

 ZIP

input ZIP code
lats

(OUTPUT) latitude coordinates of ZIP area centroids
 longs
(OUTPUT) longitude coordinates of ZIP area centroids

Return codes and error codes

Return code is equal to the number of centroids returned.
Return code -1 indicates corrupt or missing geocoder data.

Remarks

All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C, C#, Java, VB.NET

Examples for other languages and environments are available upon request.

Page 5-34

 D B 2 C O R R E C T A

Description

CorrectA wrapper function for integration with DB2 database systems.

C prototype

void db2CorrectA(char inputAddress[194+1],
char sentLen[4+1],
char errcode[30+1],
char firmname[40+1],
char urbanization[28+1],
char Dline1[64+1],
char Dline2[64+1],
char LastLine[64+1],
char Stringaddress[260+1],
char DPC[2+1],
char Checkdigit[1+1],
char cityname[28+1],
char stcode[2+1],
char zip[5+1],
char addon[4+1],
char croute[4+1],
char LACS[1+1],
char LOTsequence[4+1],
char LOTcode[1+1],
char PMB[12+1],
char results[100+1][194],
char strnum[10+1],
char secname[4+1],
char secnum[8+1],
char countyname[25+1],
char countynum[3+1],
char retcode[10+1]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

See parameter list CorrectA.

Return codes and error codes

See Appendix C.

Remarks
DB2 requires all parameters to be null-terminated. Thus, each function argument is one byte longer than in the
CorrectA definition.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

DB2

Examples for other languages and environments are available upon request.

Page 5-35

 D B 2 T I G E R C A

Description

TigerCA wrapper function for integration with DB2 database systems.

C prototype

void db2TigerCA(char inputAddress[194+1],
char sentLen[4+1],
char errcode[30+1],
char firmname[40+1],
char urbanization[28+1],
char Dline1[64+1],
char Dline2[64+1],
char LastLine[64+1],
char Stringaddress[260+1],
char DPC[2+1],
char Checkdigit[1+1],
char cityname[28+1],
char stcode[2+1],
char zip[5+1],
char addon[4+1],
char croute[4+1],
char LACS[1+1],
char LOTsequence[4+1],
char LOTcode[1+1],
char PMB[12+1],
char results[100+1][194],
char strnum[10+1],
char secname[4+1],
char secnum[8+1],
char countyname[25+1],
char countynum[3+1],
char retcode[10+1],
char TLID[20+1][10],
char tigererrcode [30+1],
char tigerstcode[20+1][2],
char tigercroute[20+1][4],
char tigercounty[20+1][3],
char MiscData[20+1][1],
char tract[20+1][6],
char block[20+1][4],
char fLat[20+1][11],
char tLat[20+1][11],
char fLong[20+1][12],
char tLong[20+1][12],
char addonStart[20+1][4],
char addonEnd[20+1][4],
char tigerret[10+1]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

See parameter list TigerCA.

Return codes and error codes

Page 5-35

See Appendices C and H.

Page 5-36

Remarks
DB2 requires all parameters to be null-terminated. Thus, each function argument is one byte longer than in the
TigerCA definition.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

DB2

Examples for other languages and environments are available upon request.

 C O R R E C T A C A T

Description

CorrectA wrapper function for integration with environments that prohibit long function argument lists.
Excludes Stringaddress parameter from the output.

C prototype

int CorrectAcat(char inputAddress[194],

char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char stringout[39200]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
stringout

(OUTPUT) pipe-delimited output results

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

Page 5-36

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

Page 5-37

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Ruby

Examples for other languages and environments are available upon request.

 C O R R E C T A C A T 2

Description

CorrectA wrapper function for integration with environments that prohibit long function argument lists.
Includes Stringaddress parameter in the output.

C prototype

int CorrectAcat2(char inputAddress[194],

char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char stringout[39460]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
stringout

(OUTPUT) pipe-delimited output results

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

Examples

Page 5-37

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development

Page 5-38

directory on UNIX\Linux distributions). The following examples are currently available for this function:

Ruby

Examples for other languages and environments are available upon request.

 C O R R E C T A C A S S O R A C L E

Description

CorrectACASS wrapper function for integration with Oracle database systems.

C prototype

int CorrectACASSOracle(char inputAddress[194],

char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[100][194], char
strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3],
char path[256]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)

inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1
 (OUTPUT) delivery line 1 information
Dline2
 (OUTPUT) delivery line 2 information

Page 5-38

LastLine
(OUTPUT) city, state, ZIP information

Page 5-39

Stringaddress
(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)

DPC
(OUTPUT) Delivery point code

Checkdigit
(OUTPUT) Delivery point check digit

cityname
(OUTPUT) City name

stcode
(OUTPUT) State abbreviation

zip
(OUTPUT) 5-digit ZIP code

addon
(OUTPUT) +4 extension for the ZIP code

croute
(OUTPUT) carrier route code and number

LACS
(OUTPUT) LACS code

LOTsequence
(OUTPUT) Line of Travel sequence number

LOTcode
(OUTPUT) Line of travel sequence code

PMB
(OUTPUT) Private mail box number

results
(OUTPUT) buffer containing postal records (see Appendix F for layout details)

strnum
(OUTPUT) primary (street) number

secname
(OUTPUT) secondary (unit) designator

secnum
(OUTPUT) secondary (unit) number

countyname
(OUTPUT) county name

countynum
(OUTPUT) countynum

path
(INPUT) location of a text file to store address statistics for generating CASS report

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

Page 5-41

By default, output address is returned in capital letters. Mixed case output switch and other custom options are
described in Appendix I.

CorrectAddress Graphical User Interface (see Chapter 6) is normally used for batch database jobs and can be used to
create a facsimile copy of PS Form 3553 on your default printer. PS Form 3553 can be used as proof of valid
addresses when approaching the United States Postal Service for a rate discount on bulk mail. In the case that you
are integrating CorrectAddress into an application and not using the GUI for your batch jobs, the function
CorrectACASS allows you to keep track of your records and create a text file with a facsimile PS Form 3553 that you
can later print out.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Oracle

Examples for other languages and environments are available upon request.

 C O R R E C T A C O B O L

Description

CorrectA wrapper function for integration with environments that do not allow integer return codes.

Includes optional flag to return secondary information on delivery line 2.

C prototype

void CorrectACobol(char inputAddress[194],
char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[200][194], char
strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3],
char retcode[10],
char dline2Flag[1]);

Page 5-41

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1

(OUTPUT) delivery line 1 information
Dline2

(OUTPUT) delivery line 2 information
LastLine

(OUTPUT) city, state, ZIP information
Stringaddress

(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)
DPC

(OUTPUT) Delivery point code
Checkdigit

(OUTPUT) Delivery point check digit
cityname

(OUTPUT) City name
Stcode

(OUTPUT) State abbreviation
Zip

(OUTPUT) 5-digit ZIP code
Addon

(OUTPUT) +4 extension for the ZIP code
croute

(OUTPUT) carrier route code and number
LACS

(OUTPUT) LACS code
LOTsequence

(OUTPUT) Line of Travel sequence number
LOTcode

(OUTPUT) Line of travel sequence code
PMB

(OUTPUT) Private mail box number
Results

(OUTPUT) buffer containing postal records (see Appendix F for layout details)
strnum

(OUTPUT) primary (street) number
secname

(OUTPUT) secondary (unit) designator
secnum

(OUTPUT) secondary (unit) number
countyname

(OUTPUT) county name
countynum

(OUTPUT) countynum
retcode

(OUTPUT) character representation of the return code
dline2flag

(INPUT) switch to return secondary information on line 2
0– default
1– always return secondary information on line 1
2 – always return secondary information on line 2

Page 5-42

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

COBOL (see Lawson Integration later in this chapter), PERL

Examples for other languages and environments are available upon request.

Page 5-44

 C O R R E C T A N

Description

CorrectA variant function that allows setting the maximum number of results per address.

C prototype

int CorrectAN(char inputAddress[194],
char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[][194],
int rsize;
char strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1

(OUTPUT) delivery line 1 information
Dline2

(OUTPUT) delivery line 2 information
LastLine

(OUTPUT) city, state, ZIP information
Stringaddress

(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)
DPC

(OUTPUT) Delivery point code
Checkdigit

(OUTPUT) Delivery point check digit
cityname

Page 5-44

(OUTPUT) City name
Stcode

(OUTPUT) State abbreviation
Zip

(OUTPUT) 5-digit ZIP code
Addon

(OUTPUT) +4 extension for the ZIP code
croute

(OUTPUT) carrier route code and number
LACS

(OUTPUT) LACS code
LOTsequence

(OUTPUT) Line of Travel sequence number
LOTcode

(OUTPUT) Line of travel sequence code
PMB

(OUTPUT) Private mail box number
Results

(OUTPUT) buffer containing postal records (see Appendix F for layout details)
rsize

(INPUT) maximum number of results to return
strnum

(OUTPUT) primary (street) number
secname

(OUTPUT) secondary (unit) designator
secnum

(OUTPUT) secondary (unit) number
countyname

(OUTPUT) county name
countynum

(OUTPUT) countynum

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C

Examples for other languages and environments are available upon request.

Page 5-46

 C O R R E C T A O R A C L E

Description

CorrectAWorld wrapper function for integration with Oracle database systems.

Includes optional flag to return secondary information on delivery line 2.

C prototype

int CorrectAOracle(char inputAddress[194],
char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[100][194], char
strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3],
char dline2flag[1]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1

(OUTPUT) delivery line 1 information
Dline2

(OUTPUT) delivery line 2 information
LastLine

(OUTPUT) city, state, ZIP information
Stringaddress

(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)
DPC

(OUTPUT) Delivery point code

Page 5-46

Checkdigit
(OUTPUT) Delivery point check digit

cityname
(OUTPUT) City name

Stcode
(OUTPUT) State abbreviation

Zip
(OUTPUT) 5-digit ZIP code

Addon
(OUTPUT) +4 extension for the ZIP code

croute
(OUTPUT) carrier route code and number

LACS
(OUTPUT) LACS code

LOTsequence
(OUTPUT) Line of Travel sequence number

LOTcode
(OUTPUT) Line of travel sequence code

PMB
(OUTPUT) Private mail box number

Results
(OUTPUT) buffer containing postal records (see Appendix F for layout details)

rsize
(INPUT) maximum number of results to return

strnum
(OUTPUT) primary (street) number

secname
(OUTPUT) secondary (unit) designator

secnum
(OUTPUT) secondary (unit) number

countyname
(OUTPUT) county name

countynum
(OUTPUT) countynum

dline2flag
(INPUT) switch to return secondary information on line 2

0– default
1– always return secondary information on line 1
2 – always return secondary information on line 2

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are
described in Appendix I.

Page 5-47

Users may specify a country-specific search database by passing the appropriate flag in the errcode field:

“Us” – Search only the USPS database (United States and territories)
“Cd" – Search only the Canadian address database

The results string may contain multiple records, but users must check the errcode string to determine the record
size and layout, which is different for each country. See Appendix C for information about country-specific error
codes. See Appendix F for information about country-specific record formats.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Oracle

Examples for other languages and environments are available upon request.

 F I N D C I T Y C O U N T Y C O B O L

Description

Accepts ZIP code as input.

Returns preferred city name, state, county information.

C prototype

void FindCityCounty(char ZIP[5],
char cityname[28],
char state[2],
char countyname[25],
char countynum[3],
char retcode[10]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
 ZIP

input ZIP code
cityname

(OUTPUT) city name
state

(OUTPUT) state abbreviation
countyname

(OUTPUT) county name
countynum

(OUTPUT) county number
retcode

(OUTPUT) numeric representation of the return code

Return codes

0 – completed successfully
-2 – no valid license key
-3 – trial expired
-99 – no matches found

Page 5-48

Remarks
All input parameters must be initialized prior to calling the function.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

COBOL

Examples for other languages and environments are available upon request.

 T I G E R C A C A T

Description

TigerCA wrapper function for integration with environments that prohibit long function argument lists. Excludes
Stringaddress parameter from the output.

C prototype

int TigerCAcat(char inputAddress[194],

char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char stringout[40920]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
 inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
stringout

(OUTPUT) pipe-delimited output results

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Page 5-49

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Ruby

Examples for other languages and environments are available upon request.

 T I G E R C A C A T 2

Description

TigerCA wrapper function for integration with environments that prohibit long function argument lists. Includes
Stringaddress parameter in the output.

C prototype

int TigerCAcat2(char inputAddress[194],

char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char stringout[41920]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
 inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
stringout

(OUTPUT) pipe-delimited output results

Return codes and error codes

See Appendix C.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Page 5-49

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

Page 5-50

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are
described in Appendix I.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Ruby

Examples for other languages and environments are available upon request.

Page 5-53

 T I G E R C A N

Description

TigerCA variant function that allows setting the maximum number of results per address.

C prototype

int TigerCAN(char inputAddress[194],
char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[][194],
int rsize,
char strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3],
char TLID[20][10],
char tigererrcode[30],
char tigerstcode[20][2],
char tigercroute[20][4],
char tigercounty[20][3],
char MiscData[20][1],
char tract[20][6],
char block[20][4],
char fLat[20][11],
char tLat[20][11],
char fLong[20][12],
char tLong[20][12],
char AddonStart[20][4],
char AddonEnd[20][4],
char tigerRet[10]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

Page 5-53

input address length (see Remarks below)
errcode

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient
urbanization

(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)
Dline1

(OUTPUT) delivery line 1 information
Dline2

(OUTPUT) delivery line 2 information
LastLine

(OUTPUT) city, state, ZIP information
Stringaddress

(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)
DPC

(OUTPUT) Delivery point code
Checkdigit

(OUTPUT) Delivery point check digit
cityname

(OUTPUT) City name

Stcode
(OUTPUT) State abbreviation

Zip
(OUTPUT) 5-digit ZIP code

Addon
(OUTPUT) +4 extension for the ZIP code

croute
(OUTPUT) carrier route code and number

LACS
(OUTPUT) LACS code

LOTsequence
(OUTPUT) Line of Travel sequence number

LOTcode
(OUTPUT) Line of travel sequence code

PMB
(OUTPUT) Private mail box number

Results
(OUTPUT) buffer containing postal records (see Appendix F for layout details)

rsize
(INPUT) maximum number of results to return

strnum
(OUTPUT) primary (street) number

secname
(OUTPUT) secondary (unit) designator

secnum
(OUTPUT) secondary (unit) number

countyname
(OUTPUT) county name

countynum
(OUTPUT) countynum

TLID
(OUTPUT) TIGER/Line identification number for use with Census Bureau files

tigererrcode
(OUTPUT) TIGER/Line specific error code (see Appendix H)

tigerstcode
(OUTPUT) FIPS state code

tigercroute
(OUTPUT) TIGER/Line carrier route number

tigercounty
(OUTPUT) FIPS county number

MiscData
(OUTPUT) Contains CBSA indicator (5 bytes), followed by FIPS congressional district code (7 bytes) (“exact match indicator” in the
earlier, ZIP+4 level version of the geocoder)

tract
(OUTPUT) Census tract number

 block

Page 5-53

 (OUTPUT) Census block number
fLat
 (OUTPUT) Latitude (“from latitude” in the earlier, ZIP+4 level version)
tLat
 (OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)

fLong

(OUTPUT) Longitude (“from longitude” in the earlier, ZIP+4 level version)
tLong

(OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)
AddonStart

(OUTPUT) {not used in the rooftop version} (“ZIP+4 start range” in the earlier, ZIP+4 level version)
AddonEnd

(OUTPUT) {not used in the rooftop version}(“ZIP+4 end range” in the earlier, ZIP+4 level version)
 tigerRet

 (OUTPUT) Geocoder return code, equal to the number of Census records returned

Return codes and error codes

See Appendices C and H.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

The results string may contain multiple records, but users must check the errcode string to determine the record size
and layout, which is different for each country. See Appendix C for information about country-specific error codes.
See Appendix F for information about country-specific record formats.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

C

Examples for other languages and environments are available upon request.

Page 5-56

 T I G E R C A O R A C L E

Description

TigerCA wrapper function for integration with Oracle database systems.

C prototype

int TigerCAOracle(char inputAddress[194],
char sentLen[4],
char errcode[30],
char firmname[40],
char urbanization[28],
char Dline1[64],
char Dline2[64],
char LastLine[64],
char Stringaddress[260],
char DPC[2],
char Checkdigit[1],
char cityname[28],
char stcode[2],
char zip[5],
char addon[4],
char croute[4],
char LACS[1],
char LOTsequence[4],
char LOTcode[1],
char PMB[12],
char results[100][194], char
strnum[10],
char secname[4],
char secnum[8],
char countyname[25],
char countynum[3],
char TLID[20][10],
char tigererrcode[30],
char tigerstcode[20][2],
char tigercroute[20][4],
char tigercounty[20][3],
char MiscData[20][1],
char tract[20][6],
char block[20][4],
char fLat[20][11],
char tLat[20][11],
char fLong[20][12],
char tLong[20][12],
char AddonStart[20][4],
char AddonEnd[20][4],
char tigerRet[10]);

Parameters (for descriptions of postal terms and abbreviations, refer to Appendix B)
inputAddress

input address, formatted according to postal specifications (see Remarks below)
sentLen

input address length (see Remarks below)
errcode

Page 5-56

(OUTPUT) error codes
firmname

(INPUT/OUTPUT) firm name / recipient

urbanization
(INPUT/OUTPUT) urbanization name (Puerto Rico addresses only)

Dline1
(OUTPUT) delivery line 1 information

Dline2
(OUTPUT) delivery line 2 information

LastLine
(OUTPUT) city, state, ZIP information

Stringaddress
(OUTPUT) buffer to store DPV, LACS, SuiteLink, RDI indicators, and special purpose data (see Appendices I-M)

DPC
(OUTPUT) Delivery point code

Checkdigit
(OUTPUT) Delivery point check digit

cityname
(OUTPUT) City name

Stcode
(OUTPUT) State abbreviation

Zip
(OUTPUT) 5-digit ZIP code

Addon
(OUTPUT) +4 extension for the ZIP code

croute
(OUTPUT) carrier route code and number

LACS
(OUTPUT) LACS code

LOTsequence
(OUTPUT) Line of Travel sequence number

LOTcode
(OUTPUT) Line of travel sequence code

PMB
(OUTPUT) Private mail box number

Results
(OUTPUT) buffer containing postal records (see Appendix F for layout details)

strnum
(OUTPUT) primary (street) number

secname
(OUTPUT) secondary (unit) designator

secnum
(OUTPUT) secondary (unit) number

countyname
(OUTPUT) county name

countynum
(OUTPUT) countynum

TLID
(OUTPUT) TIGER/Line identification number for use with Census Bureau files

tigererrcode
(OUTPUT) TIGER/Line specific error code (see Appendix H)

tigerstcode
(OUTPUT) FIPS state code

tigercroute
(OUTPUT) TIGER/Line carrier route number

tigercounty
(OUTPUT) FIPS county number

MiscData
(OUTPUT) Contains CBSA indicator (5 bytes), followed by FIPS congressional district code (7 bytes) (“exact match indicator” in the
earlier, ZIP+4 level version of the geocoder)

tract
(OUTPUT) Census tract number

 block
 (OUTPUT) Census block number
fLat

Page 5-56

 (OUTPUT) Latitude (“from latitude” in the earlier, ZIP+4 level version)
tLat
 (OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)

fLong

(OUTPUT) Longitude (“from longitude” in the earlier, ZIP+4 level version)
tLong

(OUTPUT) {not used in the rooftop version} (“to latitude” in the earlier, ZIP+4 level version)
AddonStart

(OUTPUT) {not used in the rooftop version} (“ZIP+4 start range” in the earlier, ZIP+4 level version)
AddonEnd

(OUTPUT) {not used in the rooftop version}(“ZIP+4 end range” in the earlier, ZIP+4 level version)
 tigerRet

 (OUTPUT) Geocoder return code, equal to the number of Census records returned

Return codes and error codes

See Appendices C and H.

Remarks

All input parameters must be initialized prior to calling the function.

Inputaddress parameter contains three sections of information, formatted as follows:

DELIVERY LINE 1 (64 bytes) | DELIVERY LINE 2 (64 bytes) | LAST LINE (64 bytes)

Each section is separated with a “pipe” character (|), and the remainder of each section must be padded with blanks
up to the section length. Input delivery line 2 is intended for dual address information.

sentLen parameter must be set to “194 “ (with a space) on all calls to this function.

By default, output address is returned in capital letters. Mixed case output switch and other custom options are

described in Appendix I.

The results string may contain multiple records, but users must check the errcode string to determine the record size
and layout, which is different for each country. See Appendix C for information about country-specific error codes.
See Appendix F for information about country-specific record formats.

Examples

Code samples can be found in the \Development Kits folder in the CorrectAddress installation directory (\Development
directory on UNIX\Linux distributions). The following examples are currently available for this function:

Oracle

Examples for other languages and environments are available upon request.

Page 5-57

 CALLING CORRECTADDRESS FROM C

Examples of calling CorrectAddress functions from C programs are located in the \Development Kits\C directory under
CorrectAddress installation. In addition, C prototypes for all supported API functions are provided earlier in this chapter.

 CALLING CORRECTADDRESS FROM .NET

Examples of calling CorrectAddress functions from C# programs are located in the \Development Kits\C# directory under
CorrectAddress installation.

Examples of calling CorrectAddress functions from VB.NET programs are located in the \Development Kits\VB.NET directory
under CorrectAddress installation.

 CALLING CORRECTADDRESS FROM JAVA

Examples of calling CorrectAddress functions from Java programs are located in the \Development Kits\Java directory
under CorrectAddress installation.

CorrectAddress comes with its own Java class (javaCANativeDispatcher) which provides access to the main CorrectAddress
API functions. This Java code can run on any platform due to its use of the Java Native Interface (JNI). Documentation for
the use of the class can be found in the \Development Kits\Java \Javadoc directory.

To incorporate this class into a package, you must use “correcta” as the package name.

 CALLING CORRECTADDRESS FROM PERL

No specialized wrappers are required to access CorrectAddress functions from PERL scripts on Windows. All calls are made
directly to CorrectA.dll library. A number of PERL demo files are available in your local \Development
Kits\PERL\Windows directory in the default CorrectAddress installation.

CALLING CORRECTADDRESS FROM C#

CALLING CORRECTADDRESS FROM VB. NET

WINDOWS SYSTEMS

Page 5-58

To call CorrectAddress functions from a PERL script, you must use a specialized shared object (CAPerl.so). To create this file, follow the
instructions below.

1. Build a standard CorrectAddress shared object (libCorrectA.so) as described in SHARED OBJECTS section. At the
end of the process, when prompted to delete the object files, select NO.

2. Locate the file CAPerl_wrap.c in the CorrectAddress PERL directory (/PERL/<version>) on your installation. Place
this file in the directory where libCorrectA.so was built (all .o files must still be there).

3. Use the following command to compile CAPerl_wrap.c:

$CC –O –c –I/$PERL_INCLUDE_DIRECTORY CAPerl_wrap.c

where $CC is your default compiler and $PERL_INCLUDE_DIRECTORY is the path to the directory containing
perl.h, EXTERN.h, and XSUB.h files. To find out where the directory is loaded, execute:

perl -e 'use Config; print $Config{archlib};'

Wrapper compile example:

gcc –O –c –fPIC –I/usr/lib/perl5/5.8.0/i386-linux-thread-multi/CORE

CAPerl_wrap.c

4. Create the shared object by issuing the command:

ld –G –o CAPerl.so *.o

5. Copy the files CAPerl.pm and test.pl into the directory containing your shared object. These files can be found
in your CorrectAddress PERL/<version> directory. The test.pl file contains a demonstration of calling the
CorrectA and FindCityCounty functions from the shared object.

 CALLING CORRECTADDRESS FROM RUBY

Ruby is the interpreted scripting language for quick and easy object-oriented programming. It has many features to
process text files and to do system management tasks (as in Perl). It is simple, straight-forward, extensible, and portable.

1. The “DL” LIBRARY

Ruby comes with a Standard Library called “DL”. This library provides interfaces to the underlying operating
system’s dynamic loading capabilities. Using this library, Ruby code can be written to interface with functions in
.dll files on Windows. It can also be used to load shared objects (.so files) on UNIX.

2. Description

The DL library will be used to load the libCorrectA.so file. Wrappers will be created for the following three
functions:

FindCityCounty

FindZipCity

CorrectAcat

These wrapper functions will be part of a class called "CorrectAddress". The details of these functions are shown
below:

a. def cityCounty(zip)

UNIX/ L INUX SYSTEMS

RUBY WRAPPERS FOR CO RRECTADDRESS

Page 5-59

This function calls the FindCityCounty function in the shared object. It takes the Zip Code as Input and
prints out the City, State, County Name, and County Number. A sample output is shown below:

b. def zipCity(city, state)

This function calls the FindCityCity function in the shared object. It takes the name of the City and the
State as Input and prints out the name of the New City and the Zip codes associated with that city. A
sample output is shown below:

c. def correctA(address)

This function calls the CorrectAcat function in the shared object. It takes the address as Input and prints
out the results as shown below:

The “CorrectA” function is normally used for this. However, due to some limitations either in
Ruby or in the “DL” library, a function cannot be called which takes more than 15 arguments.
Hence, the “CorrectAcat” function is used, which takes 6 arguments instead of 26 arguments in
the case of “CorrectA”.

The CorrectAddress class has a Constructor and the three wrapper functions mentioned above.

3. Constructor

The code for the Constructor is shown below:

The Constructor takes the Path of the libCorrectA.so file as an argument. It uses the dlopen method to load the
shared object. The handle to the opened shared object is stored in the instance variable (@ca) as shown.

===
Input Zip: 10509
===
City: BREWSTER
State: NY
County Name: PUTNAM
County Number: 079

===

Input City - State: Boston - MA
===
New City: BOSTON
Zip: 0210802109021100211102112021130211402115021160211702118021
190212002121021220212302124021250212602127021280212902130021310
213202133021340213502136021370216302196021990220102203022040220
502206022070221002211022120221502216022170222202228022410226602
2830228402293022950229702298

def initialize(path)

@ca = DL.dlopen(path)
end

Page 5-60

The details of the code are as follows:

a. zc = @ca["FindZipCity", "ISsSs"]

In this line, the @ca object created in the Constructor is used to get a handle to the required function.
The first argument is the name of the function, FindZipCity. The second argument is the method
signature. The first “I” stands for the return type, which is an Integer. The next four characters are the
arguments needed to call the function. “S” stands for a Character String and “s” stands for a Mutable
Character String. This is an equivalent way of writing:

int FindZipCity(const char*, char*, const char*, char*)

This function returns, what is essentially, a function pointer to the FindZipCity function.

b. @newcity = DL.malloc(28 * DL.sizeof("C"))

@zip = DL.malloc(1000 * DL.sizeof("C"))

The above two lines allocate memory for the variables in which the results will be stored. The “C”
argument in DL.sizeof indicates a “char”.

c. ret_val, rs = zc.call(city, @newcity, state, @zip)

The above line makes the actual function call by passing in the needed arguments. It returns two things –
the return value and the result set. The result set is an Array having the four parameters passed to the
function.

d. puts "\n\n=================================="

puts "Input City - State: #{city} - #{state}"

puts "=================================="

puts "New City: #{rs[1]}"

puts "Zip: #{rs[3].rstrip}"

The above lines are used for printing the Input passed to the function along with the Output.

e. DL::FREE

This line makes a call to the Garbage Collection Routines and frees the allocated memory.

def zipCity(city, state)

zc = @ca["FindZipCity", "ISsSs"]
@newcity = DL.malloc(28 * DL.sizeof("C"))
@zip = DL.malloc(1000 * DL.sizeof("C"))
ret_val, rs = zc.call(city, @newcity, state, @zip)
puts "\n\n=================================="
puts "Input City - State: #{city} - #{state}"
puts "=================================="
puts "New City: #{rs[1]}"
puts "Zip: #{rs[3].rstrip}"
DL::FREE

end

Page 5-61

 CALLING CORRECTADDRESS FROM PHP

CorrectAddress comes with a PHP development kit. It includes an example of a PHP page that references functions
exported by specialized wrapper library CorrectAPHP.dll. The library itself is located in the C:\Program Files\Intelligent
Search Technology\CorrectAddress\Development Kits\PHP\Windows directory. In order to load CorrectAddress
functions from a PHP application, you should make the following modifications to your php.ini file:

Add an appropriate extension entry: extension=CorrectAPHP.dll

Specify path to loadable extensions: extension_dir = "<directory_of_wrapper_dll>"

1. To access CorrectAddress from PHP on a Linux/UNIX based system, we must first create CorrectAddress object
files. Follow the process described in SHARED OBJECTS section to create libCorrectA object. When prompted to
delete the object files at the end of the process, select NO.

2. After creating the object files, you must copy the CAphp.c file into the directory with all your other source code.
This file can be found in your default istCorrectAddress\PHP directory where you initially installed the software.
Next, compile the file to create the CAphp object file using the following command:

cc –fpic –DCOMPILE_DL=1 –I/usr/local/include –I/usr/include/php –
I/usr/include/php/Zend –I/usr/include/php/main –I/usr/include/php/TSRM –O –c
CAphp.c

The –I option flags used in the above compile command denote necessary include directories that the compiler
will need in order to create the object file. These directories are Zend, php, main, and TSRM. These directories
will only be present if you have already installed the PHP developer’s package on your system.

3. Next, we must link the object file created with the other CorrectAddress objects created in step 1. To link the
files into ca_module.so use: cc –shared –L/usr/local/lib –rdynamic –o ca_module.so *.o. This will create
ca_module.so which can then be called from a PHP page.

4. In order for PHP to be able to find the shared object, it must reside in your PHP’s library path. The PHP library
directory by default should be in /usr/lib and its name should be php and the version number. For instance, on
a machine with PHP 4 installed the directory would be /usr/lib/php4.

5. Any PHP web page that you will use to call CorrectAddress must be located in a directory that Apache will
recognize, for instance /var/www/html. To test ca_module.so, copy the CAdemo.php test file located in your
default istCorrectAddress\PHP directory into /var/www/html.

6. If everything is set up correctly, you will be able to view CorrectAddress demo by browsing to the URL:
http://localhost/CAdemo.php The PHP code to make calls to our CorrectA and FindCityCounty functions are
accessible in CAdemo.php.

WINDOWS SYSTEMS

UNIX/ L INUX SYSTEMS

http://localhost/CAdemo.php
http://localhost/CAdemo.php

Page 5-62

 INTERFACING CORRECTADDRESS VIA LAWSON

Calls to CorrectAddress libraries can be integrated into Lawson Software’s enterprise resource planning environment. The
following procedure must be followed in order to invoke address validation routines from COBOL and Java under Lawson
ERP.

Installing user must have the authority to run C and COBOL compiler commands.

1. Extract contents of the source archive into an empty directory on your disk (source archive is the

source_vXX.zip file, where ‘XX’ stands for CorrectAddress version number). This file is located in the root
catalog of the installation disk.

2. Compile testCA.c file by running the following command (the file is provided by Experian upon request):

cc -O -bmaxdata:0x11E1A300 -c testCA.c

3. Make sure the command generates object file (testCA.o).

4. Run the build utility:

java –jar BuildLib.jar

5. At the wizard prompt for ‘link command’, type.

cob -zo libCorrectA.so *.o testCA.o -e loadshObj

If you had previously built the object and retained configuration file (conf.txt), you
may instead run ‘java –jar BuildLibAuto.jar’

This will create libCorrectA.so file ready to be called from Lawson COBOL programs.

6. Copy libCorrectA.so into the $GENDIR/lib/shared directory on the Lawson system.

7. To load CorrectAddress library dynamically, run: (e.g., CALL
“/app/lawson9/gen/lib/shared/libCorrectA.so”)

CALL “{location_of_the_object}/libCorrectA.so”

There are currently two procedures available for address validation from COBOL.

CorrectACobol

All parameter sizes are the same as in the CorrectA function call:

This procedure performs CASS-processing, standardization, and validation of input addresses.

Input parameters:

INPUT-ADDRESS
DLINE1IN
DELIM1
DLINE2IN
DELIM2
LASTLINEIN

SENTLEN
FIRMNAME
URBANIZATION
DLINE2FLAG

PIC X(64)
PIC X(01) VALUE "|".
PIC X(64)
PIC X(01) VALUE "|".
PIC X(64)

PIC X(4) VALUE "194 "
PIC X(40)
PIC X(28)
PIC X(01) VALUE "0"

Page 5-63

Call example:

FindCityCountyCobol

All parameter sizes are the same as in FindCityCounty function:

This procedure retrieves city/state/county information for a particular ZIP code:

Input parameter:

ZIP PIC X(05)

Call example:

You may use a standard shared object (.so) from the installation disk, or a library previously compiled for COBOL. For the
Java development kit, please refer to the /Java directory in the root catalog of the installation disk.

The object linked with the COBOL linker (‘cob’) in the COBOL section in this document may not be callable from Java. To
make a Java-enabled object, use the standard C linker command (‘ld’, ‘cc’ etc) to create .so out of object code.

Example (AIX):

Execute the following commands after you build shared object for use with COBOL (backup or rename COBOL .so before
proceeding). Make sure that all the object files are still in the directory.

rm testCA.o

cc –o libCorrectA.so *.o –bE:CorrectA.exp –bM:SRE -bnoentry

CALL "CorrectACobol"
USING INPUT-ADDRESS

SENTLEN
ERRCODE
FIRMNAME
URBANIZATION
DLINE1
DLINE2
LASTLINE
STRINGADDRESS
DPC
CHECKDIGIT
CITYNAME
STCODE
ZIP
ADDON
CROUTE
LACS
LOTSEQUENCE
LOTCODE
PMB
RESULTS-ARRAY
STRNUM
SECNAME
SECNUM
COUNTYNAME
COUNTYNUM
RET-CODE
DLINE2FLAG.

JAVA

CALL "FindCityCountyCobol"
USING ZIP,

CITYNAME,
STCODE,
COUNTYNAME,
COUNTYNUM,
RET-CODE

Page 5-63

This will build a shared object for use with Java.

Page 5-64

Refer to Installation on Page 2-1 for instructions on installing the product and applying monthly postal data updates.

If you require COBOL integration on UNIX/Linux platforms, follow the source archive approach in the UNIX/Linux Installation
section(for the first three steps only). Replace step 4 in that procedure with COBOL instructions above.

 INTERFACING CORRECTADDRESS VIA ORACLE

CorrectAddress functions can be integrated into Oracle applications. Oracle provides the capability of calling external
functions from within PL/SQL. This is accomplished through the creation of extended stored procedures that reference the
dynamically executable function code. An external procedure is a third-generation-language routine stored in a dynamic
link library, registered with PL/SQL, and called by you to do special purpose processing. CorrectAddress routines can be
accessed via CorrectA.dll (Windows) or libCorrectA.so (UNIX/Linux). At run time, PL/SQL loads the library dynamically,
and then calls the routine as if it were a PL/SQL subprogram. To safeguard your database, the routine runs in a separate
address space.

Development kit showing how to register and execute CorrectAddress functions using Oracle remote procedure calls is
located under \Development Kits\Oracle in your default CorrectAddress directory.

Outlined below is the basic process of calling CorrectAddress functions:

- Create alias library (CREATE LIBRARY…)

- Register CorrectAddress function (CREATE OR REPLACE FUNCTION…)

CorrectAOracle example in the development kit creates a function called pCorrectA that calls address correcting
routine CorrectAOracle (an Oracle-specific version of CorrectA). After the successful creation of the pCorrectA
function, you will be able to create PL/SQL scripts, triggers, procedures and other functions that call CorrectA.

- Create procedure to invoke external function (CREATE OR REPLACE PROCEDURE…)

- Enable server output (SET SERVEROUTPUT ON)

- Execute procedure (EXECUTE …)

 INTERFACING CORRECTADDRESS VIA MICROSOFT SQL SERVER

CorrectAddress functions can be executed from within Microsoft SQL Server environment by means of extended stored
procedures or CLR assemblies (SQL Server 2005 and higher). The latter approach uses .NET languages (see .NET
integration section earlier in this chapter).

To call CorrectAddress functions using extended stored procedures requires a specialized wrapper library (xpCorrectA.dll).
The development kit, along with this library, is located under \Development Kits\SQL Server in your default
CorrectAddress directory.

UPD ATING CORRECTAD D RESS ON LAWSON SYSTEMS

Page 5-65

Outlined below is the process of registering SQL Server extended stored procedures.

- Copy xpCorrectA.dll from your CorrectAddress\Development Kits\SQL Server directory to your SQL Server’s \Binn
directory.

- Open Microsoft SQL Server Enterprise Manager

- Connect to the server that you will be using

- Open DATABASES folder and go to the System database ‘master’

- (SQL2000) Right-click on EXTENDED STORED PROCEDURES

- (SQL2005) Right click on PROGRAMMABILITY->EXTENDED STORED PROCEDURES

- Click on NEW EXTENDED STORED PROCEDURE

- In the ‘Name’ field, type the name of the exported functions (e.g., “xp_CorrectA”)

- In the ‘Path’ field, type xpCorrectA.dll

You can also perform the steps above programmatically by executing the following SQL code:

sp_addextendedproc ‘{exported_function_name}’, 'c:\Program Files\Microsoft SQL
Server\MSSQL\Binn\xpCorrectA.dll'

Below is the list of available exported functions (see definitions for highlighted functions at the beginning of the chapter):

1. xp_CorrectA - wrapper for CorrectA excluding Stringaddress parameter
2. xp_CorrectACASS - wrapper for CorrectACASS
3. xp_CorrectASA - wrapper for CorrectA including Stringaddress parameter
4. xp_CorrectAWorld - wrapper for CorrectAWorld
5. xp_capconv - wrapper for capconv
6. xp_FindCityCounty - wrapper for FindCityCounty
7. xp_FindZipCity - wrapper for FindZipCity
8. xp_GetBuildDate - wrapper for GetBuildDate
9. xp_ParseAddress - wrapper for ParseAddress
10. xp_PrintPSForm3553 - wrapper for PrintPSForm3553
11. xp_TigerCA - wrapper for TigerCA excluding Stringaddress parameter
12. xp_TigerCASA - wrapper for TigerCA including Stringaddress parameter
13. xp_UnloadC - procedure to unload xpCorrectA.dll from memory

 INTERFACING CORRECTADDRESS VIA MYSQL

CorrectAddress functions can be called from within the MySQL environment via user-defined functions, or UDFs. A user-
defined function (UDF) is a way to extend MySQL with a new function that works like native (built in) MySQL functions.
User-defined functions can be passed a number of arguments (character strings), and return a value. They must be written
in C or C++.

Creating User-Defined Functions (UDFs)

Calling conventions for user-defined functions in the MySQL environment:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,char *result, unsigned long *length,char *is_null, char *error);

Wrappers demonstrating how to call some of the CorrectAddress functions from within MySQL are available in the
\Development Kits\MySQL folder.

Page 5-66

Building a Shared Object

To build a shared object on a Linux/UNIX platform, copy the file CorrectA_udf.cc to the location of your main
CorrectAddress object files and compile it using the command:

gcc –O –c CorrectA_udf.cc

This will create CorrectA_udf.o, follow the instructions in the SHARED OBJECTS chapter to create the main object files for
CorrectAddress and then link all the object files using the command:

ld –G –o libCorrectA.so *.o

This command will link the object files into a shared object.

You should then copy the object into a directory where it will be recognized by an OS (such as /usr/lib).

Executing User-Defined Functions

Calling CorrectASQL from MySQL:

To execute user-defined function, first launch MySQL by typing mysql at the terminal window prompt. You will see
the following (or similar) message displayed.

To call user-defined function CorrectASQL, type the following at the mysql> prompt :

create function CorrectASQL returns string soname “libCorrectA.so”;

After the function is created successfully, you can call it from the mysql> prompt as follows:

The first parameter holds the firm name of the address. This is an optional parameter. Next comes the
urbanization name of an address, this is optional and only applies to addresses in Puerto Rico. The third
parameter contains primary delivery line information and is required. The fourth parameter contains secondary
delivery line information and is used only for dual address cases and apartment abbreviation/numbers. The fifth
parameter holds the city, state, and ZIP code for an address. The sixth parameter is purely used to allocate
memory for the internal workspace of the function; this parameter should always be padded with 40000 blanks.
This function will save the entire results of CorrectA into the @ca1 variable. To parse the information into a more
user friendly format use the function parseCA.

Create parseCA as follows:

create function parseCA returns string soname “libCorrectA.so”;

Call the function by passing it two parameters, the variable containing a results set from a previous call to
CorrectASQL and a character string containing a number representing what field you want to parse out. Example
given is for parsing out the return code:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 3.23.41

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

set @ca1 = space(40000)

set @ca1 = CorrectASQL(' ', ' ', '445 Hamilton Ave Ste 608', ' ','White
Plains NY 10601',space(40000));

Page 5-67

Example from MySQL:

Below are all the possible character string values and the fields they parse:

Field Returned Parameter
Return Code ‘0’
Error Codes ‘1’
Firm Name ‘2’
Urbanization ‘3’
Delivery Line 1 ‘4’
Delivery Line 2 ‘5’
Last Line(City/State/ZIP) ‘6’
Delivery Point Code ‘7’
Checkdigit ‘8’
City Name ‘9’
State Abbreviation ‘10’
ZIP Code(5 digit) ‘11’
ZIP Add-on(4 digit) ‘12’
Carrier Route ‘13’
LACS Indicator ‘14’
LOT Sequence ‘15’
LOT Code ‘16’
PMB Designation ‘17’
Result Record ’18,n’ where n is equal to the record

number to be returned. Valid values are
between 0and 200.

Street Number ‘19’
Secondary Abbreviation ‘20’
Secondary Number ‘21’
County Name ‘22’
County Number ‘23’
ZIP + 4 ‘24’
LOT Number ‘25’

mysql> select parseCA(@ca1,’0’);
+ +
| parseCA(@ca1,’0’) |
+ +
| 1 |
1 row in set (0.03 sec)

mysql> exit

Bye

Page 5-68

Calling FindCityCountySQL from MySQL:

To create a user-defined function FindCityCountySQL, launch MySQL, and at the prompt type:

create function FindCityCountySQL returns string soname “libCorrectA.so”;

To call FindCityCountySQL, type the following at the mysql> prompt :

set @ca2 = space(60)

set @ca2 = FindCityCountySQL(‘10509’);

The parameter taken is a 5-digit zip code. This function returns the preferred city name, state abbreviation, county
name, and FIPS county number to the variable @ca2. To view the information within @ca2, use the function
parseCityCounty.

To create the UDF parseCityCounty:

create function parseCityCounty returns string soname “libCorrectA.so”;

To call parseCityCounty, type the following at the mysql> prompt:

select parseCityCounty(@ca2,’0’);

The function parseCityCounty takes 2 parameters, the variable returned from a previous call to FindCityCountySQL and a
character string representing the field to be returned. The table below describes the valid values for parameter 2:

Field Value Parameter Number

City Name ‘0’

State Abbreviation ‘1’

County Name ‘2’

FIPS County Number ‘3’

mysql> select parseCityCounty(@ca2,’0’);
+ +
| parseCA(@ca1,’0’) |
+ +
| Brewster |
+ +
1 row in set (0.03 sec)

mysql> exit

Bye

Page 5-69

 INTERFACING CORRECTADDRESS VIA POSTGRESQL

CorrectAddress functionality can be accessed from PostgreSQL environment via user-defined C language functions,
embedded into the specialized CorrectAddress shared object (libCorrectAPG.so). The first time a user-defined function in
a shared object file is called in a session, the dynamic loader loads that object file into memory so that the function can be
called.

1. To access CorrectAddress procedures from PostgreSQL on a Linux/UNIX-based system, we must first create
CorrectAddress object files. Follow the process described in SHARED OBJECTS section to create libCorrectA.so
object. When prompted to delete the object files at the end of the process, select NO.

2. After creating the object files, copy the CApgproc.c file from /Development/PostgreSQL directory on your
CorrectAddress installation disk into the directory with all the object code. Next, compile the file to create the
CApgproc.o using the following command:

The –I option flags used in the above compile command denote necessary include directories that the compiler
will need in order to create the object file. These directories will only be present if you have PostgreSQL installed
on your system.

3. Next, we must link the object file created with the other CorrectAddress objects created in step 1. To link the files
into libCorrectAPG.so use the following command:

4. Once the object is created, you can start using CorrectAddress functions in your PostgreSQL code.

Example of using CorrectA() procedure as a user-defined function.

Description of arguments:

ARG 1 – Delivery Line 1

ARG 2 – Delivery Line 2

ARG 3 – Last Line

ARG 4 – Error code (reserved for special processing)

ARG 5 – Stringaddress (reserved for special processing)

CREATE FUNCTION PG_CorrectA(character, character,
character,character,character) RETURNS CHARACTER AS
'<path>/libCorrectAPG.so', 'PG_CorrectA' LANGUAGE C STRICT;

SELECT PG_CorrectA ('445 Hamilton Ave Ste 608','','White Planes
NY','','');

DROP FUNCTION PG_CorrectA(character, character,
character,character,character);

$CC -c CApgproc.c –I<local_pgsql_path>/include -
I<local_pgsql_path>/include/server

(e.g., gcc -c CApgproc.c -I/usr/local/pgsql/include -
I/usr/local/pgsql/include/server)

$CC -shared -o libCorrectAPG.so *.o

Page 5-70

Output record layout:

FIELD NAME POSITION LENGTH

RETURN CODE 1 4

ERROR CODE 5 30

FIRM NAME 35 40

URBANIZATION 75 28

DELIVERY LINE 1 103 64

DELIVERY LINE 2 167 64

LAST LINE 231 64

DPC 295 2

CHECKDIGIT 297 1

STATE CODE 298 2

ZIP 300 5

ADDON 305 4

CARRIER ROUTE 309 4

LACS 313 1

LOT SEQUENCE 314 4

LOT CODE 318 1

PMB 319 12

STREET NUMBER 331 10

SECONDARY NAME 341 4

SECONDARY NUMBER 345 8

COUNTY NAME 353 25

COUNTY NUMBER 378 3

STRINGADDRESS 381 260

RESULTS 641 50*194

Example of using FindCityCity() procedure as a user-defined function:

Description of arguments:

ARG 1 – City

ARG 2 – State

CREATE FUNCTION PG_FindZipCity(character, character) RETURNS
CHARACTER AS '<path>/libCorrectAPG.so', 'PG_FindZipCity'
LANGUAGE C STRICT;

SELECT PG_FindZipCity ('White Planes','NY');

DROP FUNCTION PG_FindZipCity(character, character);

Page 5-71

Output record layout:

FIELD NAME POSITION LENGTH

RETURN CODE 1 4

NEW CITY NAME 5 28

ZIP CODES 33 1000

 INTERFACING CORRECTADDRESS VIA DB2

CorrectAddress libraries ship with specialized wrapper functions which allow them to be invoked from DB2 scripts by
means of stored procedures. Below is an example of how address validation methods can be accessed directly from DB2.

Wrappers demonstrating how to call some of the CorrectAddress functions from within DB2 are available in the
\Development Kits\DB2 folder.

Example of registering db2CorrectA stored procedure.

For this example, statement terminator character has been set to @.

Code samples in the \Development Kits\DB2 folder demonstrate how to register a sample stored procedure
CallCorrectA which accepts three lines of address information and makes a call to db2CorrectA. The results can then be
inserted into the output table.

Running stored procedure CallCorrectA

call CallCorrectA('445 Hamilton Ave','Ste 608','10601') @

The result of this execution will be the validated and standardized address and all of its supplemental fields. For complete
field descriptions, refer to CorrectA function specification at the beginning of this chapter.

CREATE PROCEDURE db2CorrectA(IN inputAddress varchar(255),IN sentLen
char(4),INOUT errcode char(30),INOUT firmname char(40),INOUT urbanization
char(28),OUT dline1 char(64), OUT dline2 char(64), OUT lastline char(64), OUT
stringaddress varchar(260), OUT DPC char(2), OUT checkdigit char(1), OUT
cityname char(28), OUT stcode char(2), OUT zip char(5), OUT addon char(4), OUT
croute char(4), OUT LACS char(1), OUT LOTsequence char(4), OUT
LOTcode char(1), OUT PMB char(12), OUT results varchar(19900), OUT strnum
char(10), OUT secname char(4), OUT secnum char(8), OUT countyname char(25), OUT
countynum char(3), OUT retcode char(10))
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE GENERAL
NO DBINFO
FENCED
NOT DETERMINISTIC
PROGRAM TYPE SUB
EXTERNAL NAME 'CorrectA!db2CorrectA' @

Page 6-1

Chapter 6 - CorrectAddress Graphical User Interface
(GUI)

This section will detail the various uses of the CorrectAddress Graphical User Interface, included with the Windows version of
the product. If you installed the GUI with the default settings, then select StartProgramsIntelligent Search
TechnologyCorrectAddress. The following will be displayed:

From this window, you can access all the components of the CorrectAddress product.

 CHANGING YOUR SETUP INFORMATION

Default setup information was recorded when you initially installed the CorrectAddress product, most importantly the
location of the data files on your system. If the need ever arises where you have to move your data files or wish to change
your user or printer information, access the menu by selecting Tools Options Setup.

Opening the Options Setup menu will display this window where you can change your user information that is used when
executing the CorrectAddress engine.

Page 6-2

The first frame in the window, entitled PS Form 3553 User Information, contains identification information that is required
for the generation of Form 3553. Form 3553 is a CASS Summary Report that must be included when applying for any sort
of postal discount from the United States Postal Service. Our batch processor can create its own facsimile of this form and
will input the information here into it before printing it out. You may also write your own summary report by using the
E3553.pdf file that is included with this product. The E3553.pdf file should reside in your [CorrectAddress Home]
directory (Program Files\Intelligent Search Technology\CorrectAddress by default). This PDF file required Adobe
Acrobat to read and is editable; simply place the correct values for the fields into the form and print it. More information
on what the fields of PS Form 3553 mean is given in PS Form 3553 on Page A-1.

The frame entitled Data File Paths contains all the necessary path information that is contained in your CorrectA.ini file.
This file was created when CorrectAddress was installed. If the location of the data files ever changes, you can input the
new paths here by pressing the change button next to the path you wish to change. For instance, pressing the Change
button next to the State Files path results in the following window being brought up:

You can navigate the various drives and directories on your computer until you have the path you want displayed in the
top-most text box. When done, click on the OK button; this will update the information on the Setup window. For ease of
use, when initially installed all data files are copied to the same directory; it is recommended that these files not be split up
among different directories.

Upon finishing your changes, click on the Save Settings button to save all your changes. Neglecting to save before
closing this window will undo any changes you have made. See Listing of CorrectAddress Data Files on Page D-1 for a
listing of the data files.

Page 6-3

 USING THE CORRECTION UTILITY

CorrectAddress comes with a Correction Utility that allows the user to input a single address and get a corrected response
with additional information such as Line of Travel numbers and Delivery Point Codes. To access the Correction Utility,
select it from the list of available utilities on the left side of your CorrectAddress screen.

This brings you to the Correction Utility window, as follows:

Page 6-4

To input an address for correction, enter the appropriate values in the 5 fields and press Search Now.

The Fields on the Search for Addresses screen are as follows:

*Delivery Line 1 – Street address.

Delivery Line 2 – Secondary street address if present. Only exists in a dual addressing case.

Last Line – The city, state, and ZIP, as they would appear on a piece of mail.

Country – The Country of the searched address.

Fields marked with an * are required.

CorrectAddress will correct misspellings to street addresses and city names. If a valid ZIP Code is
supplied, city and state can be omitted. If the valid city and state are supplied, a ZIP Code can be
omitted.

Clicking on the Show Additional Input Fields hyperlink will display a Firm Name field and an Urbanization field.

Firm Name - Firm name if one exists or is available, otherwise leave blank.

Urbanization - Urbanization name if one exists (Puerto Rico only) or is available, otherwise leave blank.

In the next screen we see a misspelled street address being input to the Correction Utility.

SHOW ADD ITIONAL INPU T FIELDS

Page 6-5

After clicking on the Search Now button, the corrected address fields are displayed on the left. Additional information
about the address is displayed in the results grid at the right. If an address returns a multiple number of results, the
address will not be corrected but each result will be displayed in the results grid. If no exact match could be found, the
original input is returned, and nothing is displayed in the grid. Clicking on the Clear button nullifies the input and results.
The Export Results button opens a new window containing the corrected address and results grid so you can keep old
searches visible.

The Search Options section contains a list of advanced features that can be added to an address search. Below is a list of
advanced options:

Mixed Case – Output from CorrectAddress is reported in all capitals unless this option is selected.

Street Search Only – This option allows you to search for similar street names in a given state; this will return records with
a score based on how close they match to a given street name.

Enable IParser – This switch makes the software attempt to pre-parse an address before matching is attempted. Only
effective in cases where delivery line information is split up in multiple fields, otherwise this option should be left off.

Geocode Address – This will return Longitude/Latitude and other geocoding information as well as the usual address
information on a successful search. This option can only be used if you have the Geocoding add-in for CorrectAddress.

Geocode Only – This will take a ZIP+4 code alone and attempt to match it to geographic information. This option can
only be used if you have the ZIP+4 level Geocoding add-in for CorrectAddress.

Auto–complete – this feature allows you to enter a partial city and state or partial zip code and a series of potential
matches will be displayed and can be entered into the search fields.

SEARCH OPTIONS

Page 6-5

Parse Street Numbers – this feature will display the CASS street number range in readable format.

Page 6-6

Overwrite Input – this feature will allow data to be overwritten with CASS-certified output if the address in question is
CASS-certified.

Residential Delivery Check (add on feature) - this add on feature will verify delivery type status and determine with
delivery is to a residence or a business.

SuiteLink - this feature allows users to append secondary (suite) information to a business address (see Appendix M)

Display Code options will be displayed below the search results. The radio buttons on the Display Code Descriptions are
keys that allow you to view possible error codes or return codes that are returned with the Search Results. The Display
Code Options are as follows:

An example of the Address Code option is shown below. This is a key for the Return Code returned with the Search
Results.

An example of the Return Codes options is shown below. This is a complete listing key for possible Return Codes returned
with the Search Results. Refer to Return Codes on page C-5 for descriptions.

An example of the Error Code option is shown below. This is a complete listing key for possible Error Codes return with the
Search Results. Refer to Error Codes on Page C-5 for descriptions.

An example of the Geocodes options is shown below. This is a listing of possible Geo Return Codes and Geo Error Codes
that can be returned with Search Results.

DISPLAY COD E D ESCRIPTIONS

ADDRESS CODES

RETURN CODES

ERROR CODES

GEOCODES

Page 6-7

An example of the DPV Codes option is shown below. This is a listing of possible DPV Codes Confirmation, CMRA
Indicators, False Positive Indicators, No Stat Indicator, and DPV Footnotes that may be returned with Search results.

An example of the LACS Codes is shown below. This is a listing of possible LACS Indicator Codes and LACS Return Codes
that could be returned with Search Results.

DELIVERY POINT VALIDATION (DPV) CODES

Page 6-7

Page 6-8

The Auto-completion Wizard will be activated when you click on the Auto-complete hyperlink in the Search for Addresses
area of the Correction Utility windows. Enter a city, state or zip and a list of possible matches will be displayed. Clicking on
the Finish button will enter the information on the appropriate Search Fields.

AUTO COMPLETE

LACS CODES

Page 6-8

Page 6-9

 USING THE CITY/ZIP FINDER

The City/ZIP Finder program allows the user to input a ZIP Code and get back the preferred city name that corresponds
to that address, the county it resides in, and the county number. It also allows the generation of a list of valid ZIP Code for
any city/state combination.

To use the City/ZIP Finder, select City/ZIP Finder from the list of utilities on the left, as shown below.

This brings up the City/ZIP Finder window, as shown below.

To use the City Finder, simply input a 5-digit ZIP Code as directed and click on Search Now.

The resulting city name, state, county and county number are all displayed in the results grid. Clicking on the Erase button
will clear all results and the input ZIP Code.

Page 6-10

To get a list of ZIP Codes in a valid city/state combination, select Find ZIP Codes from the Search Options box. The city
and state boxes will become enabled, after inputting a city and state, press Search Now. The results will be displayed in the
grid as shown below:

 USING THE BATCH PROCESSOR WIZARD

CorrectAddress comes equipped with a Batch Processor wizard which can take addresses contained in text files, Microsoft
Access Databases, SQL Server Databases, Oracle, and other database systems and return the corrected addresses in any of

Page 6-10

those formats. The process can run in both single-threaded and multi-threaded modes (see Appendix G for configuration

Page 6-11

details). To enter the Batch Processor, choose the Batch Utility from the list of utilities on the left menu tree. This will
activate the Batch Processing screen as shown below. By clicking on the appropriate radio button, you will need to specify
the Source Data Type to be processed.

Click on the Next button to display the Source Connect window.

1. Click on the Browse button to specify a path to a file. In this case a delimited text file will be selected. Click on

the First row has column headers checkbox to select whether the first row of text contains column headers.

2. Click on the desired radio button to specify whether the .text file is Delimited or is Fixed Width. Click on the
Next button to proceed to the next screen.

SOURCE CONNECT

Page 6-12

3. The next screen that will be active is the Parsed Text Field screen which displays the parsed fields. You will
notice the Column Delimeter and Text Qualifier fields that were used to parse the text file are displayed. You
can change this by using the appropriate drop-down list, making the desired changes to the parsing mechanism
and then click on the Apply Changes button.

a. Clicking on the Change Column Headers hyperlink will display the following. From the Column Headers
window, you can rename columns. Click on the Done button when finished.

b. Clicking on the Next button will display the Batch Properties window.

Page 6-13

The list box on the left (underneath the table name) shows the available fields in the input connection. In order for a job to
be run, CorrectAddress must know what fields contain the pertinent address information it needs.

There are 5 types of data that it uses.

Retained Fields

Firm/Recipient Name

Urbanization Name

Delivery Line 1

Delivery Line 2

Last Line

Any fields that are placed in the Retained Fields category allow for the retention of useful record information such as row
ID numbers. Note that if you are updating an old table you will not be able to set any retained fields this way.

Refer to Using the Correction Utility on Page 6-3 for descriptions of these fields.

Output No Match Records - Unless this box is checked, only addresses that match uniquely will be output.

Output Mixed Case - By default, CorrectAddress returns information capitalized. If this setting is selected, address
information will come out in mixed case.

Iparse Delivery Line 1 - Use only if you have a table which may have address information that is erratically placed in
different fields. By selecting this and concatenating the suspect fields into the Delivery Line 1 fields, Iparser will attempt to
pre-parse the address before sending it to CorrectAddress. If one of the fields contains Firm Name you can select the

BATCH PROPERTIES

CONFIGURATION OPTION S

Page 6-13

Extract Firm/Recipient sub option. This will attempt to parse out the firm name as well and send it to CorrectAddress.

Page 6-14

Geocode Address - This option can only be used if you also have purchased the CorrectAddress Geocoding add-in (See
Appendix C). If you have, you may select this option to append geocoding information to the regular address information.
Along with a validated address, the Geocode Address module returns geographical coordinates (latitude and longitude),
Census tract and block numbers, and more. Enabling the Geocode Address Option will activate additional fields in the
CorrectAddress Fields list.

Delivery Point Validation – With DPV checking enabled, capable of confirming over 145 million physical mail delivery
points throughout the United States and its territories. The DPV component will also determine if the address belongs to a
Commercial Mail Receiving Agency (CMRA) and provide other useful information to indicate match quality. Enabling the
DPV Configuration Option will activate additional DPV fields in the CorrectAddress Fields list.

LACSLinkTM - This option allows addresses that have been converted due to various USPS changes to be linked with their
new addresses. This affects many of rural-style U.S. addresses that have been assigned city-style street names for 911
emergency response systems. Additionally, LACSLink covers street names that have been modified by municipalities in
recognition of an individual or an event. Enabling the LACSLink Configuration Option will activate 2 additional LACSLink fields
in the CorrectAddress Fields list.

The Field Output tab lists the address information that you can have output to your destination table. When you select a
field, it will be added to the fields list below and the order displayed in that field box will mirror the output table. Using the
arrow keys, the order of the fields may be changed.

Clicking on the Next button will display the Data Destination window as shown below. In this window you will have the
options to determine the type of data that will be sent to the CorrectAddress batch processor. Click on the desired radio
button to enable your selection.

Click on the Next button to proceed to the Destination Connect window.

The Destination Connect window is used to specify connection details for the CorrectAddress data connection. At any
time you may clear the configuration by clicking on Clear All on the menu bar and return to Source Data Type and

DESTINATION DATA TYPE

Page 6-14

begin the wizard from the start.

By default the Configuration Path is set to a path of C:\Program Files\Intelligent Search

Page 6-15

Technology\CorrectAddress. This can be changed by clicking on the Change Config Path button and selecting a
new directory to store the .ini configuration file.

You can also recall a previous configuration by clicking on the Load Configuration on the menu bar of the Batch
Processor and selecting a previously run configuration .ini file.

Click on the Next button to continue.

Select a file name for your output. Using the radio buttons you must specify whether you would like the text file, in this
case, to be Delimited and what the Column Delimeter would be or if you would like that same text file to be Fixed Width
and what the Text Qualifier would be. A checkbox can also specific whether to output Column Headers.

Click on the Next button to start the batch process.

You will be given the option to generate PS3553 reports. Follow the prompts to generate an XML file to generate a crystal
report or click on the PS3553 Text Path check box and select a file name to generate a text file.

Click on the RUN button to start the batch process. If you choose, you can click on the Save button to save the
configuration.

DESTINATION CONNECT

START BATCH

Page 6-16

An option to process using the Sorted Batch Processor to process flat text files as available by clicking on the Process
using Sorted Batch Processor check box at the bottom of the screen.

Clicking on the Save button will save the *.ini file specified in configuration path to be loaded and run later. A
configuration may be loaded by clicking on FileLoad Configuration from the Batch Wizard.

An In-progress window will be visible showing the batch process. When complete, a Batch complete indication will be
shown in the Stage: field.

Page 6-17

The .ini file created with all of your specifications can be viewed by clicking on ViewView Results on the CorrectAddress
menu bar. An example is shown below.

Page 6-18

 USING THE SQL GENERATOR

The SQL Generator program allows the user to create and save a T-SQL or PL/SQL batch script for jobs using
CorrectAddress stored procedures. To access the SQL Generator, select it from the list on the left as shown below. This will
bring up a new window where you can login to the Oracle or SQL Server you wish to run a batch job in, as shown below:

The SQL Script Generator will automatically attempt to bring up a list of SQL Server connections when it is first loaded. If
you need to regenerate the SQL Server list at any time, click on the Login button. If you wish to login to an Oracle server,
select PL/SQL for the Language Type and click on the Login button. The program will ask you for your service name,
database, and User ID and password and attempt to connect. Upon successfully connecting, the Fields box will contain a
list of all columns in a given table. You can set which fields pertain to the various address information types by moving
them from the Fields box to the appropriate destination field on the right.

Below is a list of the fields and their definitions:

1. Firm Name

2. Urbanization Name

3. Address 1

4. Address 2

Page 6-18

5. Last Line

Page 6-19

The Firm Name is any company name for the addresses being input, if applicable. It is not required but does allow
CorrectAddress to match the address closely to firm records if they exist. Urbanization is only used in Puerto Rican
addresses and is not required; it simply helps narrow down the location of the address. Delivery Line 1 is the first address
line that would appear on a piece of mail, the actual street address. For example, 445 Hamilton Ave Ste 608. Delivery Line
1 is mandatory and cannot be left blank. Delivery Line 2 is the second street address line if present. A Delivery Line 2 is
only present in the case of dual addressing where a street address and a PO Box number or Rural Route both appear on a
piece of mail at the same time; most often it will be left completely blank. Last Line information is the same as the last line
of a piece of mail, precisely the city, state, and ZIP Code of the address. For example: White Plains, NY 10601. This field is
also mandatory and cannot be left out.

If your information (such as city/state/ZIP) are separated into multiple fields rather than one single line, you can move
them into their appropriate fields in order and they will be concatenated together to produce the proper line. For example,
the fields City, State, and ZIP can all be moved via the right arrow button next to the City, State, and ZIP Fields box. The
up and down buttons to the right of that box allow you to select a field and move it around so that they are in the proper
order. This way, CorrectAddress will concatenate the City field with the State field and the ZIP field. This produces the
appropriate Last Line field.

After setting your field definitions, you can select the SQL Scripter tab to input your output table name. After you have
named your destination table, clicking the Generate SQL Script button will create a script that can be executed from your
SQL Query Analyzer or SQL*Plus window. Note that for PL/SQL the script will actually create a stored procedure which
must then be executed. An example is shown below:

Clicking on the Copy button will copy your SQL Script to the Microsoft® Windows® clipboard.

 Clicking on the Save button will save your SQL Script to a .sql file.

Page 6-19

 Clicking on the Print button will print your SQL Script to a printer of your choice.

Page 7-1

Chapter 7 - Troubleshooting

 GENERAL TROUBLESHOOTING ISSUES

1. Every time I run CorrectAddress, I get a return code of -99.

Your shared object or library cannot find the data files. Check your CADataPath.h or ISTfpath.h (if exists) that
was used during the object build; make sure it points to the right data location.

There is an additional environment variable, CA_DATA, that may be set to overwrite settings.

2. I get “Segmentation Fault” when trying to run CorrectAddress

Your shared object version does not match the data. Check release months for both .so source and the data
files, make sure they match.

Data files are corrupt. If you FTP your data files, make sure they were transferred in binary mode. Also check that
all data files are from the same month (except tiger0..9.txt files).

 PLATFORM-SPECIFIC ISSUES

1. When using the shared object, I receive errors about undefined symbols.

Resolution:

Make sure the .exp file is attached when .so is built and contains all export symbols (function names).

2. Architecture Issue: AIX 5.2 64bit: When linking with ld, I receive the following error:

Resolution:

If you see this error, you may be exceeding the default 256MB process limit. If you have at least 1 GB of memory
on your AIX system, you can complete the following steps to increase the maxDATA from 256MB to 1GB:

a. Login as root.

b. Change to the /usr/ccs/bin directory.

c. Make a copy of the original executable file ʹbindʹ.

d. Create the script file maxdata, by saving this text file to your hard drive. Be sure to save the file as
ʺmaxdataʺ with no extension.

e. Enter chmod 755 maxdata to make the script file executable.

f. Enter maxdata bind 4 to modify the o_maxdata file from the default 0x00000000 to 0x40000000.

g. To check the maxDATA, enter dump -ov bind. The output should be 0x40000000.

AIX- SPECIFIC ISSUES

ld: 0711-101 FATAL ERROR: Allocation of 2738976 bytes failed in routine
get_RLDs.

There is not enough memory available.
Please check your ulimit or paging space or use local problem reporting
procedures.

make: 1254-004 The error code from the last command is 12.

Page 7-1

Page 7-2

3. Architecture Issue: AIX 5.2 64bit: I’m having problems using the ‘-q64’ option with gcc.

Resolution:

Use -maix64 flag instead of -q64.

Linking files into the shared object...

MESSAGE>gcc: ̀ -b' must come at the start of the command line. The command 'gcc -o libCorrectA.so *.o -
bE:CorrectA.exp -bM:SRE -bnoentry' was NOT successful! ExitValue: 1

Resolution:

Use -maix64 flag instead of -q64.

Resolution:

Use -maix64 flag instead of -q64.

1. General Architecture Issue: I receive the following error when trying to run CallCorrectA:

Resolution:

Shared object was not compiled with optimizations. Recompile with –O flag.

1. Architecture Issue: IBM PowerPC 64-bit: What are the compiler/ link commands for a 64-bit Linux IBM PowerPC
machine?

Resolution:

Compile Command: gcc -m64 -mpowerpc64 -shared –fPIC

Link Command: gcc -m64 -mpowerpc64 -shared -fPIC -o libCorrectA.so *.o

1. Architecture and Compiler Issue: Solaris 9 with gcc 3.4.2: We used the following compile and link commands:

Resolution:

You need to pass the –fPIC flag to gcc. See the compile and link commands below:

gcc -c -g -O2 -I. -fPIC *.c

MESSAGE>gcc: unrecognized option `-q64'

MESSAGE>gcc: unrecognized option `-q64'

MESSAGE>gcc: unrecognized option `-q64'

MESSAGE>gcc: unrecognized option `-q64'

Compilation completed

LINUX- SPECIFIC ISSUE S

./CallCorrectA: relocation error: ./libCorrectA.so: undefined symbol: fstat

LINUX IBM POWERPC - SPECIFIC ISSUES

SOLARIS - SPECIFIC ISS UES

Page 7-3

gcc -shared -fPIC -o libCorrectA.so *.o

The compile and link completes okay, but when I check out the shared object it complains about symbol not
found (see below).

ldd -u libCorrectA.so

libucb.so.1 => /usr/ucblib/libucb.so.1
libresolv.so.2 => /usr/lib/libresolv.so.2
libsocket.so.1 => /usr/lib/libsocket.so.1
libnsl.so.1 => /usr/lib/libnsl.so.1
libelf.so.1 => /usr/lib/libelf.so.1
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1
libmp.so.2 => /usr/lib/libmp.so.2
/usr/platform/SUNW,Sun-Fire-V240/lib/libc_psr.so.1
symbol not found: muldi3 (./libCorrectA.so)
symbol not found: muldi3 (./libCorrectA.so)
symbol not found: muldi3 (./libCorrectA.so)
symbol not found: muldi3 (./libCorrectA.so)
symbol not found: muldi3 (./libCorrectA.so)
symbol not found: muldi3 (./libCorrectA.so)
symbol not found: muldi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: udivdi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)
symbol not found: umoddi3 (./libCorrectA.so)

unused object=/usr/lib/libelf.so.1

unused object=/usr/lib/libmp.so.2

2. General Architecture Issue: We receive the following compiler warnings:

gcc -O -c *.c

gcc -c *.c

ld -G -o libCorrectA.so *.o

Page 7-4

Resolution:

Upgrade gcc to 3.0 or above.

 LANGUAGE-SPECIFIC ISSUES

1. Exception occurred during event dispatching:

Resolution:

Make sure libCorrectA.so is in the java.library.path. To display the contents of the path, add:

System.out.println(System.getProperty("java.library.path")) to your java file.

You may also choose to append the location of the .so to the LIBPATH variable.

2. How do I modify java.library.path dynamically?

Resolution:

Use -D option as follows:

javac javaCANativeDispatcher.java javaCallFI.java

java –Djava.library.path=<location of your libCorrectA.so> CallFI CAImport.ini

3. I get the following error message.

Resolution:

java.lang.UnsatisfiedLinkError: no CorrectA in java.library.path

at java.lang.Throwable.fillInStackTrace(Native Method)

at java.lang.Throwable.fillInStackTrace(Compiled Code)

at java.lang.Throwable.<init>(Compiled Code)

at java.lang.Error.<init>(Error.java:43)

at java.lang.LinkageError.

MESSAGE >DPV.c:912: warning: malformed `#pragma pack'
stgresin1 src]# gcc -o CallCorrectA CallCorrectA.c libCorrectA.so
libCorrectA.so: undefined reference to `ks'
libCorrectA.so: undefined reference to ̀ resetModDate'
libCorrectA.so: undefined reference to `doDPV'
libCorrectA.so: undefined reference to `rpa'
libCorrectA.so: undefined reference to `dpvfile'
libCorrectA.so: undefined reference to `rmZeros'
libCorrectA.so: undefined reference to `kr'
collect2: ld returned 1 exit status

DPV.o size is very small.

JAVA- SPECIFIC ISSUES

Page 7-5

Your Java must be 32-bit and is unable to load a 64-bit shared object. Rebuild the object without 64-bit flags, or
use 64-bit JRE.

4. I get the following error message when I run the builder, BuildLib.jar:

Resolution:

Use /usr/java/j2re1.x.x/bin/java -jar BuildLib.jar

It is possible that you are picking up the java runtime for gcj the Gnu Compile for Java. This is a Java front end.

Make a symbolic link for /usr/bin/java to point to the correct directory.

5. I receive the following error message while running BuildLib.jar:

Resolution:

CAPort.zip is corrupt, most likely due to incorrect file transfer (FTP in ASCII mode).

Compare file sizes of CAPort.zip before and after the transfer, and re-copy if they do not match.

6. The build (BuildLib.jar) hangs after Extracting CorrectAddress(r) modules from archive...

Resolution:

Delete CAPort1.zip, and re-run the build. This is an internal system issue.

<prompt># java -jar ./BuildLib.jar
Warning: -jar not understood. Ignoring.
Exception in thread "main" java.lang.NoClassDefFoundError: ..BuildLib.jar

at gnu.gcj.runtime.FirstThread.run() (/usr/lib/libgcj.so.5.0.0)
at _Jv_ThreadRun(java.lang.Thread) (/usr/lib/libgcj.so.5.0.0)
at _Jv_RunMain(java.lang.Class, byte const, int, byte const, boolean)
(/usr/lib/libgcj.so.5.0.0)
at gcj_personality_v0 (<IstCorrectAddresspath>/java.version=1.4.2) at

 libc_start_main (/lib/tls/libc-2.3.4.so)
at _Jv_RegisterClasses (<IstCorrectAddresspath>/java.version=1.4.2)

Exception in thread "main" java.lang.UnsatisfiedLinkError:
/local/greg/IstCorrectAddress/libCorrectA.so: ld.so.1: java: fatal:
/local/greg/IstCorrectAddress/libCorrectA.so: wrong ELF class: ELFCLASS64

at java.lang.ClassLoader$NativeLibrary.load(Native Method)
at java.lang.ClassLoader.loadLibrary0(ClassLoader.java:1586)
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1511)
at java.lang.Runtime.loadLibrary0(Runtime.java:788)
at java.lang.System.loadLibrary(System.java:834)
at javaCANativeDispatcher.<clinit>(javaCANativeDispatcher.java:806)

at Test.main(javaCANativeDispatcher.java:947)

Preparing modules...

Extracting CorrectAddress(r) modules from archive...

Preparing CorrectAddress(r) modules for compilation...

An error occurred! Please contact Support.
java.util.zip.ZipException: error in opening zip file

at java.util.zip.ZipFile.open(Native Method)
at java.util.zip.ZipFile.<init>(ZipFile.java:204)
at java.util.zip.ZipFile.<init>(ZipFile.java:85)
at Create.if(Unknown Source)
at Create.main(Unknown Source)

File cleanup: Retain object files?(Y or N)

Page 7-6

7. I get the following message:

Resolution:

Specify the fPIC flag in the compile command and use the regular ld command for linking (without fPIC option)

1. What is the procedure to re-build the PERL wrappers?

Resolution:

a. Make sure SWIG is installed on your system.

b. Type: swig -perl5 CAPerl.i (or other interface file). This will create CAPerl_wrap.c.

c. Compile the wrapper C file gcc -O -c -I<include dir>/CORE CAPerl_wrap.c where <include dir> is
location of PERL includes and can be retrieved by:perl -e 'use Config; print $Config{archilib};'

d. Create shared object with wrapper object file ld -G -o CAPerl.so *.o.

e. Run a PERL test that has a 'use CAPerl' and accesses CAPerl:: functions.

IMPORTANT: Make sure two-dim arrays are declared in 1 dimension in the interface (.i file) (e.g. results[200][194]
should be results[38800])

1. DPV processing does not work when invoked from the web browser. Error code 21 is returned.

Resolution:

Set read/write permissions for user apache (or equivalent) on the CorrectAddress data directory. Particularly,
AFstreetsort.txt is affected.

1. When running SQL Server extended stored procedures, addresses do not correct and an error code of “66” (out of
memory) is returned.

Resolution:

This may be due to the way SQL Server handles memory in excess of 2 GB. SQL Server sets aside by default at
most 512 MB of RAM for internal processes and extended stored procedure DLLs, it then occupies the
remaining available memory for its buffer pool. When running CorrectAddress in batch or with multiple
processes, CorrectAddress may require more than the base 512 MBs set aside. To increase the amount of
reserved memory, open Enterprise Manager and right click on the server you wish to configure, selecting
Properties. Under the General tab there is a button marked Startup Parameters, press this to bring up a screen

Exception in thread "main" java.lang.UnsatisfiedLinkError:
<path>/libCorrectA.so: ld.so.1: <javapath>/java: fatal: relocation error: file
<path>/libCorrectA.so: symbol udivdi3: referenced symbol not found

at java.lang.ClassLoader$NativeLibrary.load(Native Method)
at java.lang.ClassLoader.loadLibrary0(ClassLoader.java:1751)
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1676)
at java.lang.Runtime.loadLibrary0(Runtime.java:822)
at java.lang.System.loadLibrary(System.java:992)
at javaCANativeDispatcher.<clinit>(javaCANativeDispatcher.java:348)

at Test.main(javaCANativeDispatcher.java:373)

PERL- SPECIFIC ISSUES

PHP- SPECIFIC ISSUES

SQL- SPECIFIC ISSUES

Page 7-6

where you can input new parameters for SQL Server. To increase the memory, use the –g parameter which takes
a number in MBs to determine the amount of RAM to reserve. Setting the memory to 1024 MBs (e.g. –g1024)
will prevent future occurrences of this error.

Page A-1

Appendix A- PS Form 3553
Form 3553 is used when applying for Postal discount rates as explained in DMM A950, available at the Postal Service’s
website http://www.usps.gov. A sample of this file is located in your CorrectAddress installation directory in PS3553.pdf.

The fields and information required are as follows:

A1: CASS Certified Company Name Experian Ltd

A2: CASS Certified Software Name and Version CorrectAddress v9.0X.XX.A

A3: Configuration Our configuration is STD (standard)

B1: List Processor’s Name The name of the company running this software.

B2: Date List Processed The date the addresses were corrected, only input the master file
and LOT section.

B3: Date of Database Product Used The date for the database product, this can be found on a label of
the CorrectAddress CD or DVD used for installation.

B4: List Name or ID The internal identification for the list.

B5: Number of Lists Processed How many lists of addresses were submitted for correction

B6: Total Records Processed Total number of records.

C: Output The sections here will ask for the total number of coded ZIPs, add-
ons, carrier routes, etc. and their validation dates. The total numbers
are shown when running the batch and the dates for each section
are as follows. All From” dates are the date of the database product
being used. Below are the “To” dates for each field.

ZIP+4: 180 days from “From” date
DPBC: 180 days from “From” date Five
Digit: 365 days from “From” date
Carrier Route: 90 days from “From” date LOT:
90 days from “From” date

D: Mailer Contains mailing information, the address, and name of the
company using this product, date this form was created, and a
signature of an authorized company official.

E: Qualitative Statistical Summary Contains values that can be found displayed after running the batch,
such as total number of LACS converted addresses, total number of
highrise default addresses, highrise exact addresses, rural route
default and exact addresses.

http://www.usps.gov/

Page B-1

Appendix B- Glossary of Postal Terms
Carrier Route

Code assigned by the USPS to a group of addresses to aid mail delivery within a ZIP code. Consists of a carrier
route type and carrier route code (length: 4 bytes). For example, “C001”.

CASS

Coding Accuracy Support System. The Postal Service’s guidelines for address correction through which all address
correction software must be certified.

Check Digit

Delivery point check digit is a number that is added to the sum of the other digits in the DPBC to yield a number
that is a multiple of ten.

Cityname
Address city name (maximum length: 28 bytes).

CBSA

Core Bases (Metropolitan) Statistical Area, maintained by the U.S. Census Bureau . CBSAs are categorized as Metropolitan (at
least one urbanized area of 50,000+ inhabitants) or Micropolitan (at least one urban cluster of between 10,000 and 50,000
inhabitants).

CMRA

Commercial Mail Receiving Agency. CMRAs are companies who offer mail services commercially to customers and are
authorized to receive mail on behalf of their customer. Also see PBSA.

Congressional District Code

See FIPS codes

County Name

Name of county that the address belongs to (maximum length: 25 bytes). County is a local level of government
below the state.

County Number

County number within a state (maximum length: 3 bytes).

Delivery Line 1

Primary delivery address line (maximum length: 64 bytes). Contains the house number, pre-directional, street
name, street suffix, post-directional, secondary abbreviation, and secondary number. For example, “445 N
Hamilton Ave Ste 608”.

Delivery Line 2

Second delivery address line (maximum length: 64 bytes). This line is usually reserved for dual addresses.

Delivery Point Alternate Records

Special address records containing alternate delivery points. E.g., different street name with the same address
number as the base record, or different firm name associated with the base record at the same address as the
base record. Similar to aliases.

DMM

Domestic Mail Manual. Contains all postal regulations for domestic mail. Available for browsing at www.usps.gov.

http://www.usps.gov/

Page B-2

DPC
Delivery Point Code (length: 2 bytes). This field contains the last two digits of the house/box number, or if the match is made to a highrise
record, the secondary unit number representing the delivery point information to form the 11-digit or delivery point barcode (DPBC).
Possible values: “00” through “99” or spaces.

DPBC
Delivery Point Barcode. Created from the nine-digit ZIP code combined with the Delivery Point Code (DPC) and the
Checkdigit sum. Used on mail pieces for hand held scanning.

DPV

Delivery Point Validation. See Appendix J.

Dual address

Address containing both a street portion and a PO Box or Rural Route address.

(E.g., 100 Main St, PO Box 123, Sometown, NY 11111)

Early Warning System

EWS is a file that lists by ZIP Code new street names that are not yet available within the ZIP + 4 product. Today,
ZIP + 4 product is extracted from the Address Management System (AMS) approximately 30 days before its
“official” release date. When address matches a record in the EWS file, a no-match is returned.

eLOT
Extended LOT.

False Positive Records

Control records placed by the USPS into the DPV and LACSlink databases to prevent unauthorized tampering
(e.g., creation of lists containing every single delivery point in a geographical region). A match against a False
Positive record activates a Stop Processing request, causing the software to disable DPV or LACSlink processes
for all future addresses, until the process has been reactivated by the CASS vendor.

Error Codes

A string of one or more informational codes returned from a call to CorrectAddress function. Listing of error
codes for variants of the standard CorrectA() function is provided in Appendix C.

Finance Number

Code assigned to USPS facilities (primarily post offices) to collect cost and statistical data and compile revenue
and expense data. Used to better match addresses in which input ZIP codes are missing or incorrect, especially
for cities that span multiple ZIP codes.

Firm/Recipient Name

Name of individual, company, building, apartment complex, shopping center, or other entity identifier
(maximum length: 40 bytes). CorrectAddress returns corrected firm name or input firm name if no match found.

FIPS codes (state, county, congressional district)

Federal information processing standards codes (FIPS codes) are a standardized set of numeric or alphabetic
codes issued by the National Institute of Standards and Technology (NIST) to ensure uniform identification of
geographic entities through all federal government agencies. The entities covered include: states and
statistically equivalent entities, counties and statistically equivalent entities, named populated and related
location entities (such as, places and county subdivisions), and American Indian and Alaska Native areas.

Congressional district codes are 7 digit codes that consist of 2 digits representing the state, 2 digits representing
the congressional district, and 3 digits designating the number of the Congress.

Page B-3

FSA

Forward Sortation Area. The first three characters of the Canadian postal code. FSA pinpoints a general area to which mail is
delivered. The first character represents a province or territory or a portion within either.

General Delivery addresses

When postal customers pick up their mail at the local post office, it can be addressed as General Delivery. The
USPS database contains special records for general delivery. Street name is “GENERAL DELIVERY” and the
directional, suffix and secondary information fields are all blank. The add-on code for general delivery addresses
is usually 9999.

Highrise addresses

Records that may be used to identify a commercial building, apartment complex, highrise, wing or floor of a
building, group of apartment mail boxes, or physical location other than a street.

LACS
Locatable Address Conversion System. Data set provided to allow addresses that have been converted due to USPS changes or
for 911 emergency systems to be linked with their new address. (See Appendix K for more details.)

LDU

Local Delivery Unit. The last three characters of the Canadian postal code. The LDU reveals a specific delivery point, such as a
building, a large-volume receiver of mail, or a range of addresses on a street.

LastLine

Output city, state, and ZIP/+4 (maximum length: 64 bytes). For example: “White Plains, NY 10601-1827”.

LOT

Line of Travel. A code composed of a four digit sequence number and an associated code (“A” or “D” for ascending and
descending respectively). Denotes the direction that mail is delivered in for an address (length: 4 bytes)

LVR

Large Volume Receiver. Term used by Canada Post to designate an entity subject to special address validation rules (length: 60
bytes).

Municipality

Term used by Canada Post to designate a city, town, village, township, borough, district or county (length: 30
bytes).

PBSA

P.O.Box Street Address. USPS street addresses that are equivalent to traditional P.O.Box-style addresses. They are flagged as
CMRAs (see above) when verifying deliverability.

PMB
Private mailbox designation within a CMRA (maximum length: 12 bytes).

Point of Call (PoC) Address Data

Range-based data set with specific deliverable addresses within given Canadian postal codes. More accurate
than Postal Code Address Data (PCAD)

Postal Code

Page B-3

Code system used by Canada Post (length: 6 bytes).

Page B-4

Postal Code Address Data (PCAD)

Range-based data set based on Canadian postal codes. Less accurate than Point of Call (PoC) Address Data.

Post-Directional

A directional abbreviation specified after the street name in an address. For example, 445 Hamilton Ave S
(maximum length: 2 bytes).

Pre-Directional

A directional abbreviation specified before the street name in an address. For example, 445 N Hamilton Ave
(maximum length: 2 bytes).

Preferred City Name

City name identified by the Postal Service as either the preferred city name at the 5-digit ZIP Code level, or the
ZIP+4 level. In case of conflict between the two, the latter name takes precedence.

Primary Number

See Street Number.

Province

Administrative division within Canada. Analogous to state in the U.S.

Questionable Address

Canada Post defines a “questionable” address as one which is not complete or fully accurate, but in some
instances may still be deliverable. An apartment building address is questionable if the mailing address does not
have a unit number and there are no unit numbers available in the Canada Post database. A rural address is
questionable if it cannot be validated based on all of the civic address components present and is therefore
validated based on the Postal Code only.

Return Code

Integer return value of a CorrectAddress function. Listing of return codes for variants of the standard CorrectA()
function is provided in Appendix C.

Secondary Abbreviation

The abbreviation of an apartment, suite, or other secondary housing name. Examples include: Apt, Ste, Fl, Rm
(maximum length: 4 bytes).

Secondary Name

See Secondary Abbreviation

Secondary Number

The apartment/suite number of the address. For example, 445 Hamilton Ave Ste 608 (maximum length: 8 bytes).

State Code

State abbreviation (length: 2 bytes) within the U.S.

Street Name

The actual name of the street. For example, 445 N Hamilton Ave (maximum length: 28 bytes).

Street Number

The house number for the street (Primary number). For example, 445 Hamilton Ave (maximum length: 10 bytes).

Street Suffix

The abbreviation of the type of street. Examples include: Ave, St, Blvd (maximum length: 4 bytes).

TIGER/Line

Topographically Integrated Geographic Encoding and Referencing System – U.S. Census Bureau’s geocoding

Page B-4

database, containing features and statistical geographic areas

Page B-5

Unique ZIP code

Special ZIP code associated with a single high volume address where mail distribution is handled internally.
Unique ZIP codes are subject to special USPS CASS rules.

Urbanization

Urban development within a geographic area (maximum length: 28 bytes). This is an additional delivery line
input for addresses in Puerto Rico.

ZIP code

Zone Improvement Plan code (length: 5 digits) Postal code system used by the United States Postal Service.

ZIP Addon (+4)

Extension of a ZIP code which determines a more precise location within the ZIP. (length: 4 bytes)

Page C-1

Appendix C- Return Codes and Error Codes
The following return codes and error codes are used by variants of the standard CorrectA function, including TigerCA.
Non-USPS codes are returned only by CorrectAWorld and TigerCA.

To determine whether a foreign address has been encountered, users must check the first 2 bytes of the errcode string for
a match against a foreign country code below.

"30" – Canadian address

If the first two bytes match a foreign country code, the return code and remaining codes in the errcode strings will
correspond to the codes particular to that country, as described in the tables below. If a foreign country code does not
exist in the first two bytes of the errcode string, all return codes and error codes will match the descriptions for the USPS
CorrectA codes provided in the section below.

 USPS RETURN CODES

The Return Code is the integer value returned at completion of the validation process.

Return
Code

Description

1 Match found; four-digit ZIP add-on assigned.

>1 Multiple possible results, but no exact match made. Number of results is the value of return code.

<0 Multiple possible results only when error code contains 11; no exact match made. Number of results is the
absolute value of the return code.

-1 When error code contains 07, delivery point validation failed; five-digit ZIP returned.

-3 When error code contains 05 - PO Box, Rural Route or Highway contract; street name normalized though
no match found.

-99 No match found, and the original input has been returned.

Page C-2

 USPS ERROR CODES

The error codes field generated by CorrectAddress is a 30-character string in which 2-byte codes are placed going from left
to right. Each 2-byte number refers to a specific code as detailed below.

Error
Code

Description

00 Address is Default Highrise or Rural Route.

This address matched to a default delivery record in a multi-unit building, or a rural/highway contract record
with route number in the street name field. See Appendix B for information on highrise addresses.

01 No match in 5-digit ZIP Code; match found in finance number.

Input ZIP code was incorrect. Correction applied successfully using city/state information provided. See
Appendix B for information on finance numbers.

02 ZIP Code add-on not found; replaced with correct add-on.

Input +4 code was incorrect. Correction applied successfully. See Appendix B for information on ZIP-Addon
codes.

04 City name corrected.

Input city name was incorrect. Correction applied successfully.

05 PO Box, Rural Route or Highway Contract address standardized.

Input address was a box, rural route or highway contract address in a non-standard form (e.g., P.O.Box, or
POBOX). Standardization performed successfully.

06 Street number not precise match in street range; e.g. alphanumeric 10A within numeric range 1-99.

Input address contained extra characters in the street number. These characters were retained in the output.

07 Address non-deliverable; no add-on assigned.

Delivery Point Validation (DPV) check failed.

08 Secondary number is not precise match in secondary range; e.g. alphanumeric 10A within numeric range
1-99.

Input address contained extra characters in the secondary number. These characters were retained in the
output.

09 Address is Delivery Point Alternate.

See Appendix B for information on Delivery Point Alternate records.

10 City is part of multiple counties.

More than one county name is listed for the address city name. Preferred county name is returned.

11 No match; failed CASS multi-component rule; number of results is absolute value of return code.

Several problems were found in the input address. Unable to match using CASS logic. Number of near matches
returned is equal to the absolute value of the return code.

12 All highrise records returned; first result is the CASS-certified address; Z's follow last result.

Multiple records containing secondary ranges (apartment low – high numbers) returned in the results
parameter. End of results is indicated by a string of ten “Z”s (ZZZZZZZZZZ). This error code always appears with
error code “00”. See Appendix B for information on highrise addresses. See Appendix F for result record layout.

13 Military address.

14 Street address with appended apartment number.

Page C-3

Error
Code

Description

Input address contained secondary information that could not be resolved through the CASS process.
Secondary number was retained in the output.

15 No match; near matches placed in results field; Z's follow last result.

Multiple records containing possible match candidates returned in the results parameter. End of results is
indicated by a string of ten “Z”s (ZZZZZZZZZZ). This error code always appears with error code “99”. See
Appendix F for result record layout.

16 Preferred city name used.

Input city name was changed to a preferred city name for this address. See Appendix B for information on
preferred city names.

17 The PO Box Only Delivery Zones

indicates there is only one ZIP for a given facility and that facility has no other form of postal delivery other than
PO Box deliveries.

18 DPV False Positive.

DPV process stopped, ZIP+4 codes will no longer be assigned until DPV has been reenabled. Each subsequent
call will return error code “21”. See Appendix B for information on False Positive records.

19 No match; address found in Early Warning System database.

See Appendix B for information on the Early Warning System (EWS) database.

20 Street name modified.

Input street name was incorrect. Correction applied successfully.

21 DPV processing already stopped; please contact Support to restart the module.

See error code “18”.

22 LACSLink processing already stopped; please contact Support to restart the module.

See error code “24”.

23 No match; no correlation between city and unique ZIP Code; 5-digit ZIP Code deleted.

Input record contained a unique ZIP code, input city did not match the ZIP. According to CASS rules for
handling unique ZIP codes, 5-digit ZIP code was deleted. See Appendix B for information on Unique ZIP codes.

24 LACSLink False Positive.

LACSlink process stopped, ZIP+4 codes will no longer be assigned until LACSlink has been reenabled. Each
subsequent call will return error code “22”. See Appendix B for information on False Positive records.

30 Foreign address.

31 Geocoder files missing or corrupt.

39
Failed 5-digit ZIP validation using city/state information

The output City, State and ZIP Code in LastLine do not correspond

40 Multiple matches; incorrect post-directional.

Input address contained an incorrect post-directional abbreviation. Unable to correct automatically. Candidate
records returned. See Appendix B for information on post-directionals.

41 Multiple matches; incorrect pre-directional.

Input address contained an incorrect pre-directional abbreviation. Unable to correct automatically. Candidate
records returned. See Appendix B for information on pre-directionals.

Page C-4

Error
Code

Description

Some input information was considered unnecessary and was removed.

45 Street suffix modified.

Input address contained an incorrect street suffix. Correction applied successfully. See Appendix B for
information on street suffixes.

46 Street directional modified.

Input address contained an incorrect pre- or post-directional abbreviation. Correction applied successfully. See
Appendix B for information on pre- and post-directionals.

47 Address requires apartment/suite number; none input.

Missing secondary number.

48 Multiple matches; would resolve with pre-directional.

Input address contained no pre-directional abbreviation. Unable to correct automatically. Candidate records
returned. See Appendix B for information on pre-directionals.

49 Multiple matches; would resolve with post-directional.

Input address contained no post-directional abbreviation. Unable to correct automatically. Candidate records
returned. See Appendix B for information on post-directionals.

50 Multiple matches; would resolve with street suffix.

Input address contained no street suffix. Unable to correct automatically. Candidate records returned. See
Appendix B for information on street suffixes.

51 Address does not require apartment/suite; none input.

This address matched to a default delivery record in a multi-unit building, or a rural/highway contract record
with route number in the street name field. (See error code “00”.) No secondary information was required. See
Appendix B for information on highrise addresses.

52 Address does not require apartment/suite; incorrect input.

This address matched to a default delivery record in a multi-unit building, or a rural/highway contract record
with route number in the street name field. (See error code “00”.) Secondary information was provided, but
incorrect. See Appendix B for information on highrise addresses.

57 Address not standardized; not enough information provided.

58 Address not standardized; invalid ZIP Code.

Input ZIP code was incorrect. Unable to standardize address.

59 Address not standardized; belongs to US territory.

Unable to standardize address. State abbreviation indicates that the address belongs to one of the territories.

60 Expired verification database; DPV/LACSLINK processing disabled.

Postal data files expired. Address validation halted. Data expires 105 days after the build date. Build date can be
obtained by calling GetBuildDate API function.

42 Multiple matches; incorrect street suffix.

Input address contained an incorrect street suffix. Unable to correct automatically. Candidate records returned.
See Appendix B for information on street suffixes.

43 ZIP Code is PO Box or Rural Route only.

ZIP code contains no street records. Match is made to a PO Box, route or general delivery record.

44 Apparent extraneous information removed.

Page C-5

61 House number not on street.

Input street number was incorrect.

64 Data mismatch.

Postal data files do not match CorrectAddress library.

65 Unable to open data file(s).

Postal data files are missing or corrupt.

Error
Code

Description

66 Out of memory.

67 Trial expired.

68 Invalid or missing license key.

80 RDI error: unable to open data files.

Residential Delivery Indicator lookup files are missing or corrupt.

81 RDI error: out of memory.

 CANADA POST RETURN CODES

Return
Code

Description

1 A non-ambiguous match was made to a Canadian address.

0 No match could be made for this address, nor could any near matches be found.

<0 No exact match could be resolved for this address. The number of near matches returned is equal to the
absolute value of the return code.

Page C-6

 CANADA POST ERROR CODES

Error
Code

Description

01 Valid address

02 Correctable address - reformatted

03 Invalid / noncorrectable address

05 Civic address

06 Civic address with route service

07 PO Box address

08 Route Service address

09 General Delivery address

11 Large Volume Receiver address type A

12 Large Volume Receiver address type B

13 Large Volume Receiver address type C

14 Large Volume Receiver address type D

15 Large Volume Receiver address type E

16 Large Volume Receiver address type F

18 Municipality incorrect

Error
Code

Description

19 Postal code invalid or missing and matching address has wrong municipality

20 Invalid province name / abbreviation

21 Postal code invalid

23 Civic number out of range

24 Missing unit number

25 Invalid unit number

26 Invalid civic suffix

27 Invalid street

28 Street name typo

29 Unit number in front of civic without a dash

30 Civic suffix with space

31 Invalid unit designator

32 Street type missing / invalid

33 Street type typo

34 Street direction missing

35 Street direction invalid

Page C-7

36 Street direction typo

37 Route information missing on civic route service address

38 Route service removed from PoCAD managed rural civic

39 PO Box number out of range

40 PO Box identifier typo

42 Route type identifier typo

43 Route type incorrect

44 Route Service number incorrect and missing postal code

45 Route Service number incorrect

47 General Delivery indicator typo

49 Delivery Installation type typo

50 Delivery Installation name missing

51 Delivery Installation type missing

52 Delivery Installation name incorrect

53 Delivery Installation info missing

55 Pound sign removed

56 Postal code missing

58 Warning - address invalid for corresponding LVR postal code - address deemed valid based on postal code

59 Warning - correctable address for corresponding LVR postal code

61 Warning - address invalid for corresponding rural postal code

Error
Code

Description

62 Warning - correctable address for corresponding rural postal code - address deemed valid based on postal
code

63 PoCAD excluded rural civic

64 Postal Code changed from Rural to Urban

65 Postal Code corrected

66 Postal Code LDU changed

67 Postal Code FSA changed

68 Valid Questionable - incoming address has no unit number and there is no unit number in CPC

69 Valid Questionable - incoming address does not contain a recognizable delivery mode

70 Valid Questionable - incoming address delivery mode does not exist in Postal Code

71 Processed using Point of Call (PoC) Address Data

72 Processed using Postal Code Address Data (PCAD), even though Point of Call (PoC) data was requested

Page D-1

Appendix D- Listing of CorrectAddress Data Files

 STANDARD

ZIP+4 data files:

strname.txt, firm.txt, nskey.txt, zByFin.dat, zByFin.idx, zToKey.idx, keyToStreet[0-9].idx, streetToZ4[0-9].idx, z4[0-9].dat, z4f.dat,
unique.txt

City/State data files:

alias.dat, aliasname.txt, county.txt, countyByState.txt, ctystate.idx, detail.dat, findurbkey.dat, findurbname.dat, pobzone.txt

eLOT data file:

ltravel.wrk

EWS data file:

ews.txt

DPV data files:

dph.hsa.z[00-99], dph.hsc, dph.hsf, dph.hsp, dph.hsv, dph.hsx, lcdadd.dat, lcdzip.idx, dph.hsn,dph.hsu,dph.hst,dph.hsy,dph.hsz,dph.hsr.zall

LACSLink data files:

llk.hs[1-6], llk.hsl, llk_leftrite.txt, llk_pno.dat, llk_sno.dat, llk_dsc.dat, llk_hint.txt, llk_nam.dat, llk_suf.dat, llk_crd.dat, llk_lln.dat,
llk_rv9.esd, llk_strname.dat

SuiteLink data files:

slk.asc, slknine.lst, slknoise.lst, slknormal.lst

ZIPmove data files:

zipmove.idx, zipmove.txt

 ADD-ONS

Geocoding Files:

ZIP+4 level - tiger[0-9]c.txt

Address (rooftop) level (pre-2010) - geocoder\[strdir.txt, strsuf.txt, streets.txt, gc[01-72].bin, and gc[01-72].bnd]

Address (rooftop) level - geocoder\2010\[addr_[0-9].idx, addr_[0-9].dat,coords_[0-9].dat],zip_centroid.dat,zip_centroid_codes.dat

Canadian data files:

dell_inst_mult, lvr_zip_add[1-6], lvr_zip_add[1-6].ind, ref_add[1-5], ref_add[1-5].ind, zip_add[1-5], zip_add[1-5].ind, mcr,
mcr.ind, scr, scr.ind, buildinfo, pcm, ref_poc[1-5],ref_poc[1-5].ind, zip_poc[1-5],zip_poc[1-5].ind

fmt\
dell_inst_mult.fmt, dcr_[A-F].fmt, ref_add[1-5].fmt, zip_add[1-5].fmt, mcr.fmt, scr.fmt,pcm.fmt,ref_poc[1-5].fmt, zip_poc[1- 5].fmt

sets\
altstreetcodes.set, dellinsttypes.set, dir.common.set, dir.set, dir.strict.set, dircodes.set, errors.set, gd.set, pobox.set,
provcodes.set, provinces.set, provinces.strict.set, rr.set, streetcodes.common.set, streetcodes.set, streetcodes.strict.set, type2.set,
unitcodes.set, unitcodes.strict.set

Page E-1

Appendix E - Postal Discount Rates
An online tutorial to the preparation of business mail can be found at the following web site:

https://pe.usps.com/BusinessMail101/index

For a complete price list, go to :

http://pe.usps.com/cpim/ftp/manuals/dmm300/ratesandfees.pdf

https://pe.usps.com/BusinessMail101/index
http://pe.usps.com/cpim/ftp/manuals/dmm300/ratesandfees.pdf

Page E-1

Page F-1

Appendix F - Results Record Layout

 U.S. RESULTS LAYOUT

Field Number

Field Description Bytes Position Start/End Notes

1 Detail Code 01 01/01 D = Detail

2 ZIP Code 05 02/06

3 Record Type Code 01 18/18 F = Firm
G = General Delivery
H = Highrise
P = PO Box
R = Rural Route/Highway Contract
S = Street

4 Carrier Route ID 04 19/22

5 Street Pre-directional
Abbreviation

02 23/24 N,W,S,E,NW,SW,NE or SE

6 Street Name 28 25/52

7 Street Suffix Abbreviation 04 53/56

8 Street Post-directional
Abbreviation

02 57/58 N,W,S,E,NW,SW,NE or SE

9 Street Number Range Low
(From)

10 59/68

10 Street Number Range High
(To)

10 69/78

11 Street Number Odd/Even
Code

01 79/79 (O)dd, (E)ven or (B)oth

12 Building or Firm Name 40 80/119

13 Secondary Abbreviation 04 120/123 Only record types F & H

14 Secondary Number Range
Low (From)

08 124/131 Only record types F & H

Field Number

Field Description Bytes Position Start/End Notes

15 Secondary Number Range
High (To)

08 132/139 Only record types F & H

16 Secondary Number
Odd/Even Code

01 140/140 Only record types F & H

17 ZIP Addon Number Range
Low (From)

04 141/144

Page F-1

18 ZIP Addon Number Range
High (To)

04 145/148

Page F-2

19 Base/Alternate Record Code 01 149/149 B = Base; A = Alternate

20 LACS Status Indicator 01 150/150 L - LACS Converted

Blank - not available

21 Finance Number 06 152/157

22 State Abbreviation 02 158/159

23 County Number 03 160/162

24 Urbanization City State Key 06 171/176

25 Preferred Last Line City State
Key

06 177/182

26 Filler 12 183/194 Filler-Do Not Use

 CANADIAN RESULTS LAYOUT

Field Number Field Description Bytes Position Start/End Notes

1 Province Code 02 1/2

2 Municipality Name 30 3/32

3 Postal Code 06 33/38

4 Street Name 30 39/68

5 Street Type Code 06 69/74

6 Street Directional Code 02 75/76

7 Street Address Sequence Code 01 77/77

8 Street Address High Number (To) 06 78/83

9 Street Address Number Suffix Low Number (To) 01 84/84

10 Suite High Number (To) 06 85/90

11 Street Address Low Number (From) 06 91/96

12 Street Address Number Suffix High Number (From) 01 97/97

13 Suite Low Number (From) 06 98/103

14 Lock Box Bag High Num (To) 06 104/109

R E S U L T S R E C O R D L A Y O U T

15 Lock Box Bag Low Number (From) 06 110/115

16 Route Service Type Description 02 116/117

17 Route Service Number 04 118/121

18 Delivery Installation Type Description 05 122/126

19 Delivery Installation Qualifier Name 15 127/141

20 Building Name 30 142/171

21 Building Type Code 01 172/172

22 LVR Name 60 173/232

Page F-3

23 Department Name 30 233/262

24 Branch Name 30 263/292

25 Language Code 01 293/293

26 General Delivery Description 60 294/353

27 Filler 01 354/354

Page G-1

Appendix G- Batch Processor Configuration
This section describes configuration options for running the Windows batch processor executable (CABatch.exe). The
program can run in both single-threaded and multi-threaded modes. For latter mode, a processor configuration file
(CABatch.exe.config) must be present in the local directory.

 PROCESSOR CONFIGURATION FILE

The default processor configuration file located in the CorrectAddress installation directory is set up as follows:

<userSettings>

<CABatch.My.MySettings>

<setting name="MaxAddressQueueLists" serializeAs="String">

<value>10</value>

</setting>

<setting name="MaxAddressesPerQueueList" serializeAs="String">

<value>100</value>

</setting>

<setting name="MaxConsumerThreads" serializeAs="String">

<value>0</value>

</setting>

<setting name="RunThreaded" serializeAs="String">

<value>False</value>

</setting>

</CABatch.My.MySettings>

</userSettings>

Setting RunThreaded to True enables multi-threaded processing (this option is currently available for TEXT FILE
PROCESSING ONLY).

MaxAddressQueueLists specifies the number of groups of addresses to keep in memory. This value should be set to the
number of cores + 2.

MaxAddressesPerQueueList specifies the number of addresses in each address queue list in memory. This value should
be kept at 100.

MaxConsumerThreads specifies the number of threads to run. This value should be set to the number of cores or
(number of cores – 2).

RUNNING BATCH PROCESSOR AT COMMAND-LINE PROMPT:

cd C:\Program Files\Intelligent Search Technology\CorrectAddress

C:\Program Files\Intelligent Search Technology\CorrectAddress>CABatch.exe MyConfigFile.ini

Batch job configuration file (e.g., MyConfigFile.ini) can be created using the Batch Utility wizard in the Graphical Interface
(CorrectGUI.exe), or manually by the user. Below is a user’s guide that describes job configuration files in detail.

Page G-1

Page G-2

 BATCH JOB CONFIGURATION FILES

GENERAL ORGANIZATION

[CorrectAddress Configuration File]

[THREAD] - contains paths to store temporary process statistics

[INPUT] - contains information about the data source

[OPTIONS] - contains run-time options, such as add-ons, mixed case conversion etc.

[OUTPUT] - contains information about the data destination

[ADDRESSVALUES] - section header

[RET FIELDS] - contains list of retained fields (optional)

[FIRM] - list of fields containing firm name / recipient matching (optional)

[URBANIZATION] - list of fields containing urbanization information (optional)

[DLINE1] - list of fields containing delivery line information

[DLINE2] - list of fields containing additional delivery line information (optional)

[LASTLINE] - list of fields containing last line information (e.g., city, state, ZIP)

[END ADDRESSVALUES] - section terminator

SECTIONS

[THREAD]

This section contains thread name, start and end record counts and paths to three files containing temporary process
statistics..

[INPUT]

Sample - text input

THREAD0

0

0

UpdateProcessPath: C:\Program Files\Intelligent Search
Technology\CorrectAddress\UpdateProcessPath1.ini

CancelProcessPath: C:\Program Files\Intelligent Search
Technology\CorrectAddress\CancelProcessPath1.ini

ErrorLogPath: C:\Program Files\Intelligent Search
Technology\CorrectAddress\ErrLogPath0.ini

[INPUT]

Type: Text

Input: C:\SampleRecords\MyInputFile.txt

Format: Delimited

TEXTDELIM: "

DELIM: ,

ColHeader: True
Cols: 8

EmployeeID

Page G-2

Page G-3

Sample - database input

The input section contains the following settings:

Input type (Text, SQLServer, Oracle, Access)

Input file or database location

File format : DELIMITED or FIXEDWIDTH

Text delimiters and qualifiers (for delimited files)

Column headers (true/false)

Total number of fields/columns and their listing

FirstName

MiddleName

LastName

Address1

City

State

ZIP

[INPUT]

Type: SQLServer

ConnType: 2

Server: (local)

Port: 1433

Database: SAMPLEDATABASE

Username: sa

Password: mypassword

OLEDBname: sqloledb

ODBCname: SQL Server

ConnString: Data Source=MyServerName;Initial Catalog=MyDatabaseName;User
ID=MyUsername;Password=MyPassword

IPPortBool: False

WindowsBool: False

ConnStringBool: False

TableType: Table

TableName: INPUTADDRESSES

Cols: 12

EmployeeID=0-9

LastName=10-29

FirstName=30-39

Title=40-69

TitleOfCourtesy=70-94

BirthDate=95-117

HireDate=118-140

Address1=141-200

City=201-215

State=216-230

ZIP=231-240

Country=241-255

Page G-4

Database input fields and fixed-width text input must contain field start-end positions as shown in the database example
above.

[OPTIONS]

The following run-time switches are available: Geocoder (GEO), Output No-Match records (NOMATCH), proper case
conversion (MIXEDCASE), IParser (IPARSE), generation of text-based and XML-based CASS reports (forms PS3553), custom
options described in Appendix I (CODES) and the country indicator (0 for auto-detect, 1 for USA, 2 for Canada).

[OUTPUT]

Sample - text output

[OPTIONS]

Geo: False

NoMatch: True

MixedCase: False

IParse: False

PS3553 TEXT: False

PS3553 XML: False

Codes:

Country: 1

[OUTPUT]

Type: Text

Output: C:\SampleRecords\MyOutputFile.txt

Format: Delimited

TextDelim: "

Delim: ,

ColHeader: true

Cols: 31

RET 0:EmployeeID

RET 0:LastName

RET 0:FirstName

CA 0:Recipient

CA 1:Urbanization

CA 2:Delivery Line 1

CA 3:Delivery Line 2

CA 4:Last Line

CA 5:Street Number

CA 6:Pre-Directional

CA 7:Street Name

CA 8:Street Suffix

CA 9:Post-Directional

CA 10:Secondary Designation

CA 11:Secondary Number

CA 12:City Name
CA 13:State Abbreviation

CA 14:ZipWithAddon

CA 15:Zip5

CA 16:Addon

Page G-5

Sample - database output

This section is similar to the input section with a notable exception of field naming conventions. Retained fields are
preceded with “RET 0”, CorrectAddress output fields are preceded with “CA #”, where # uniquely identifies field contents.
E.g., “CA 2” will always mean “Delivery Line 1”, but the field can be renamed to something else at user’s discretion. To do
so, simply change the description following the colon. For example, change “CA 2: Delivery Line 1” to

CA 2: AddressLine1

The effect of this change is that the output file/table will have a field name “AddressLine1” containing primary delivery line
information.

CA 17:LOT Number

CA 18:DPC

CA 19:Checkdigit

CA 20:Record Type

CA 21:LACS

CA 22:Carrier Route

CA 23:PMB

CA 24:County Name

CA 25:County Number

CA 26:Return Code

CA 27:Error Codes

[OUTPUT]

Type: SQLServer

ConnType: 2

Server: (local)

Port: 1433

Database: SAMPLEDATABASE

Username: sa

Password: mypassword

OLEDBname: sqloledb

ODBCname: SQL Server

ConnString: Data Source=MyServerName;Initial Catalog=MyDatabaseName;User
ID=MyUsername;Password=MyPassword

IPPortBool: False

WindowsBool: False

ConnStringBool: False

TableType: Table

TableName: OUTPUTADDRESSES

Cols: 31
RET 0:EmployeeID

RET 0:LastName

RET 0:FirstName

CA 0:Recipient

CA 1:Urbanization

CA 2:Delivery Line 1

CA 3:Delivery Line 2

CA 4:Last Line

…

{et cetera, as shown in the text output above)

Page G-6

[ADDRESSVALUES]

This section contains information about input field mappings. [RET FIELDS] subsection contains a listing of retained fields,
[FIRM] subsection contains list of fields to be used for firm/recipient matching, [URBANIZATION] contains fields with
urbanization information (used only in Puerto Rican addresses), [DLINE1] and [DLINE2] subsections contain delivery line
information, and the [LASTLINE] contains city, state and postal code (ZIP) fields. [END ADDRESSVALUES] serves as section
terminator.

ADDITIONAL OUTPUT FIELDS

Geocoder fields

GEO 0:Geo TLID

GEO 1:Geo Misc Data

GEO 2:Geo Tract GEO

3:Geo Block

GEO 4:Geo From Latitude

GEO 5:Geo To Latitude GEO

6:Geo From Longitude GEO

7:Geo To Longitude GEO

8:Geo Addon Start GEO

9:Geo Addon End GEO

10:Geo Return Code GEO

11:Geo Error Codes

DPV fields

DPV 0:DPV Flags

DPV 1:DPV Footnotes

DPV 2:DPV Vacant

DPV 3:DPV PBSA

[ADDRESSVALUES]

[RET FIELDS]

EmployeeID

LastName

FirstName

[FIRM]

[URBANIZATION]

[DLINE1]

Address1

[DLINE2]

[LASTLINE]

City

ZIP

[END ADDRESSVALUES]

Page G-6

Page G-7

LACSlink fields

LL 0:LACS Code

LL 1:LACS RetCode

RDI fields

RD 0:RDI

SuiteLink fields

SL 0: SuiteLink

 ENABLING RUNCABATCH SUPPORT FOR CANADA DATA

This configuration setting allows RunCABatch for Canada data. These settings only apply to RunCABatch API. If the
configuration is not in the configuration file, it will use USA as default.

[COUNTRY]
ALL

[USADATAPATH]
<Path to USA Data>

[CANADADATAPATH]
<Path to CAN Data>

[USAGEODATAPATH]
<Path to Tigerline Data>

Note: [COUNTRY] could have values USA, CAN, ALL. (ALL means both CAN and USA)

Page H-1

Appendix H- Geocoding
Geocoding support allows CorrectAddress users to retrieve information from the Census Bureau and match it to the USPS
data based on address information and ZIP+4. Along with a validated address, the module returns geographical
coordinates (latitude and longitude), Census tract and block numbers and more. The geocoding functionality is accessible
via options in the Windows Graphical User Interface as well as via three exported functions: TigerCA, getCentroid and
GeoCode. Interfacing to these functions is described in further detail in the API chapter earlier in the manual.

 GEOCODING ERROR CODES / FOOTNOTES

00 – ZIP code is invalid.

01 – Out of memory.

02 – Failed to load pre-2010 TIGER/Line data

03 – Error opening data connection.

04 – No record for ZIP+4.

05 – No record for specified ZIP+4; near ZIP+4 match.

06 – No record for specified ZIP+4; Highrise default ZIP +4 used.

07 – No record for specified ZIP+4; near Street ZIP +4 used.

08 – No record for specified ZIP+4; near street ZIP +4 used.

09 – No address level record exists; attempting to use ZIP+4.

20 – Match found in latest TIGER/Line data

22 – Failed to load latest TIGER/Line data

26 – No matches found in latest TIGER/Line data

30 – ZIP centroid coordinates returned (no match in street level latest TIGER/Line data)

 GEOCODING CONVERSION

With geocoding, the latitudes and longitudes are returned in decimal degree format. You may convert to
HR/MIN/SECONDS using the following formula:

1. The whole units of degrees will remain the same (i.e. in +38.897011 longitude, start with 38°).

2. Multiply the decimal by 60 (i.e. .897011 * 60 = 53.82066). The whole number becomes the minutes (53').

3. Take the remaining decimal and multiply by 60. (i.e. .82066 * 60 = 49.2396). The resulting number becomes the
seconds (49"). Seconds can remain as a decimal.

4. Take your three sets of numbers and put them together, using the symbols for degrees (°), minutes (‘), and
seconds (") (i.e. 38°53'49" longitude).

Page I-1

Appendix I - Custom Options
These custom options can be enabled for variants of the CorrectA function through the CorrectAddress API. To set the
various options a flag must be passed in the errcode argument prior to the call to CorrectA or its variants. All flags are
two-byte alphabetic codes where the first character is always upper case and the second lower case. To be effective, flags
must be appended consecutively from the beginning of the errcode string. The relative order of the flags does not matter.
Common customization flags and their descriptions are listed below.

Aa Abbreviate always. Always prefer abbreviated name if otherwise specified. The option has no effect by itself but
combined with As will return the abbreviated street name, no matter how long the street line in the result is.

Ac Abbreviate city. Return abbreviated city name if available.

As Abbreviate street. Return abbreviated street name if the street line is longer than 30 characters. Otherwise, the form best
matching the input is preferred.

Cd Search only the Canadian address database. Can be used in CorrectAWorld and CorrectAOracle functions.

Db Run software in debug mode, generates CAdebug.log in the program directory.

Df Flip input delivery lines in a dual address

Ln Disable logging (No log files are created in the \Data directory)

Mc Display output in mixed case format.

Mx Return secondary information on the line it was entered.

My Return secondary information on the second line.

Pc Return preferred city name. (Override input city name, even if valid for mailing.) If preferred name for the specific
ZIP+4 record is different from the preferred city name for the ZIP code, the former name takes precedence.

Po Enable Point of Call (PoC) Address Data processing for Canadian addresses.

Ra Return alias street name. (Override preferred street name.)

Rd Enable RDI processing. (RDI data must be installed. See Appendix L.)

Ro Retain dropped address information in a dual address. Discarded address data will be written to the
Stringaddress variable starting at position 147, ending at 176 which will lead to replacing Non-Delivery
Day Ind, Non-Delivery Day Val, No Secure Location, Door Not Accessible and Enhanced DPV Code.

Ry Parse and standardize address on no-match. Parsed values will be written to the Stringaddress variable starting
at position 21 and formatted as follows:

Pre-directional (2 bytes) Street name (28 bytes) Suffix (4 bytes)

Post-directional (2 bytes)

Us Search only the USPS database (United States and territories). Can be used in CorrectAWorld and
CorrectAOracle functions.

Zd Read postal data from disk (recommended for machines with < 1GB RAM).

Zf Load all postal data into memory (instead of default load-on-demand). EXAMPLE:

The example below shows how to enable mixed case output and force preferred city name output by passing the

/* ... */

char errcode[30];

/* ... */

cpy_word(errcode,"McPc",4);

rc = CorrectA(inputAddress, sentLen, errcode,...);

Page I-1

appropriate flags in the errcode argument.

Page J-1

Appendix J - Delivery PointValidation(DPV™)
In addition to being certified for standard ZIP+4® processing, CorrectAddress supports Delivery Point Validation (DPV™).
DPV takes the verification process one step further and authenticates the address as an actual delivery point. With DPV
checking enabled, CorrectAddress is capable of confirming over 145 million physical mail delivery points throughout the
United States and its territories. The DPV component will also determine if the address belongs to a Commercial Mail
Receiving Agency (CMRA) and provide other useful information to indicate match quality.

 DELIVERY POINT VALIDATION INDICATORS

When the validation process is complete, DPV results appear in the Stringaddress variable in the following format:

Field Number Field Description Bytes Position Start/End

1 DPV Confirmation 01 01/01

2 CMRA 01 02/02

3 False Positive 01 03/03

4 No-Stat 01 04/04

5 DPV Footnotes 10 05/14

6 No-Stat Reason Code 02 15/16

7 Vacant 01 17/17

8 PBSA 01 18/18

9 Drop 01 19/19

10 Throwback 01 20/20

11 Non-Delivery Day Ind 01 166/166

12 Non-Delivery Day Val 07 167/173

13 No Secure Location 01 174/174

14 Door Not Accessible 01 175/175

15 Enhanced DPV Code 01 176/176

 DELIVERY POINT VALIDATION (DPV) CONFIRMATION INDICATOR

Field contains the results of the call to the DPV Confirmation Hash Table: dph.hsa

Return values:

Y – Address DPV confirmed for both primary and (if present) secondary numbers

D – Address DPV confirmed for the primary number only, and secondary number information was missing

S – Address was DPV confirmed for the primary number only and the secondary number information was

present but invalid, or a single trailing alpha on a primary number was dropped to make a DPV match.

N – Primary number failed to DPV confirm.

Blank – Address not presented to hash table.

Page J-1

Page J-2

 DELIVERY POINT VALIDATION (DPV) CMRA INDICATOR

Field contains the results of the call to the DPV CMRA Hash Table: dph.hsc

DPV CMRA Table contains CMRA Addresses (see Glossary).

Return values:

Y – Address found in CMRA table.

N – Address not found in CMRA table.

Blank – Address not presented to hash table.

 DELIVERY POINT VALIDATION (DPV) FALSE POSITIVE INDICATOR

Field contains the results of the call to the DPV False Positive Hash Table: dph.hsf

Return values:

Y – Address found in False Positive table.

N – Address not found in False Positive table.

Blank – Address not presented to hash table.

 DELIVERY POINT VALIDATION (DPV) NO-STAT INDICATOR

Field contains the results of the call to the DPV No-Stat Hash Table: dph.hsx

DPV No-Stat Table contains addresses that are not receiving delivery and not counted as a possible delivery. These
addresses are not receiving delivery because a) delivery has not been established; b) customer receives mail as a part of a
drop; or c) the address is no longer a possible delivery because the carrier destroys or returns all of the mail. Addresses for
delivery points in gated communities may also be identified as No-Stats.

Return values:

Y – Address found in No-Stat table.

N – Address not found in No-Stat table.

Blank – Address not presented to hash table.

Page J-2

Page J-3

 DESCRIPTION OF DELIVERY POINT VALIDATION (DPV) FOOTNOTES

AA – Input Address Matched to the ZIP+4 file

A1 – Input Address Not Matched to the ZIP+4 file

BB – Input Address Matched to DPV (all components)

CC – Input Address Primary Number Matched to DPV but Secondary Number not Matched (present but invalid)

N1 – Input Address Primary Number Matched to DPV but Address Missing Secondary Number

M1 – Input Address Primary Number Missing

M3 – Input Address Primary Number Invalid

P1 – Input Address RR or HC Box number Missing

P3 – Input Address PO, RR, or HC Box number Invalid

PB – Input Address Matched to a PBSA Record (Carrier Route C770 through C779)

RR – Input Address Matched to CMRA and PMB designator present (PMB 123 or #123)

R1 – Input Address Matched to CMRA but PMB designator not present (PMB 123 or #123)

R7 – Addresses that are assigned to a phantom route of R777 or R779

F1 – Input Address Matched to a Military Address

G1 – Input Address Matched to a General Delivery Address

U1 – Input Address Matched to a Unique ZIP Code

TA – Input address primary number matched by dropping trailing alpha

IA – Informed address identified
C1 – Input address primary number matched, secondary number not matched; secondary number required

 DELIVERY POINT VALIDATION (DPV) No-STAT REASON CODE

Field contains the results of the call to the Hash Table: Dph.hsr.zall

Provides details as to why records are flagged as No-Stats.

Return values:

1 – IDA (Internal Drop Address) – Addresses that do not receive mail directly from the USPS,

but are delivered to a drop address that services them.

2 – CDS No-Stat – Addresses that have not yet become deliverable. For example, a new

subdivision where lots and primary numbers have been determined, but no structure exists yet for occupancy.

3 – Collision – Addresses that do not actually DPV confirm. In this case, the ‘Y’ should be set

to ‘N’ on the DPV ‘A’ table and all other table values should be blank.

4 – CMZ (College, Military and Other Types) – ZIP + 4 records USPS has incorporated into the data.

5 – Regular No-Stat – Indicates addresses not receiving delivery and the addresses are not

counted as possible deliveries.

6 – Secondary Required - The address requires secondary information.

Page J-3

Page J-4

 DELIVERY POINT VALIDATION (DPV) VACANT INDICATOR

Field contains the results of the call to the DPV Vacant Table: dph.hsv

DPV Vacant Table contains delivery points that were active in the past, but are currently vacant (in most cases unoccupied
over 90 days) and not receiving delivery.

Return values:

Y – Address listed in the table of vacant addresses

N – Address not listed in the table of vacant addresses

Blank – Address not presented to hash table

 DELIVERY POINT VALIDATION (DPV) PBSA INDICATOR

Field contains the results of the call to the DPV PBSA Table: dph.hsp

DPV PBSA Table contains PO Box Street Addresses, or PBSAs (see Glossary).

Return values:

Y – Address listed in the table of PBSA addresses

N – Address not listed in the table of PBSA addresses

Blank – Address not presented to hash table

 DELIVERY POINT VALIDATION (DPV) DROP INDICATOR

Field contains the results of the call to the Hash Table: dph.hsd

Flag indicates mail is delivered to a single receptable at a site

Return values:

Y - Address was found in the table

N - Address was not found in the table

Blank - Address was not presented to the table

 DELIVERY POINT VALIDATION (DPV) THROWBACK INDICATOR

Field contains the results of the call to the Hash Table: dph.hst

Mail is not delivered to the street address

Return values:

Y - Address was found in the table

N - Address was not found in the table

Blank - Address was not presented to the table

Page J-4

Page J-5

 DELIVERY POINT VALIDATION (DPV) NON-DELIVERY DAY FLAG

Field contains the results of the call to the Hash Table: dph.hsy

Flag indicates mail delivery is not performed every day of the week

Return values:

Y - Address was found in the table

N - Address was not found in the table

Blank - Address was not presented to the table

 NON-DELIVERY DAY VALUE
Field contains the results of the call to the Hash Table: dph.hsz

Indicates which days mail is not delivered to the address

 DELIVERY POINT VALIDATION (DPV) NO SECURE LOCATION

Field contains the results of the call to the Hash Table: dph.hsu

Flag indicates door is accessible, but package will not be left due to security concerns

Return values:

Y - Address was found in the table

N - Address was not found in the table

Blank - Address was not presented to the table

 DELIVERY POINT VALIDATION (DPV) DOOR NOT ACCESSIBLE

Field contains the results of the call to the Hash Table: dph.hsn

Flag indicates addresses where USPS cannot knock on a door to deliver mail

Return values:

Y - Address was found in the table

N - Address was not found in the table

Blank - Address was not presented to the table

Page J-5

Page J-6

 DELIVERY POINT VALIDATION (DPV) ENHANCED RETURN CODES

Return values:

Y - Address was DPV confirmed for primary/secondary components necessary to determine a valid delivery point.

D - Address was DPV confirmed for the primary number only, and the secondary number information was missing.

S - Address was DPV confirmed for the primary number only, the secondary number
information was present but not confirmed or a single trailing alpha on a primary number
was dropped to make a DPV match and secondary information required.

N - Primary number failed to DPV confirm.

R - Address confirmed but assigned to phantom route R777 or R779 and USPS delivery is not provided.
Blank - Address not presented to hash table.

Page K-1

Appendix K- LACSLink™

CorrectAddress supports LACS
Link™. LACSLink stands for Locatable Address Conversion System Link. It allows addresses that

have been converted due to various USPS changes to be linked with their new addresses. This affects many of rural-style
U.S. addresses that have been assigned city-style street names for 911 emergency response systems. Additionally, LACSLink

covers street names that have been modified by municipalities in recognition of an individual or an event.

With LACSLink processing enabled, the CorrectAddress engine will standardize and verify the input address, and will return a
LACS converted counterpart, whenever it is applicable.

When the validation process is complete, LACSLink return codes appear in the last 3 bytes of the Stringaddress variable
(starting at position 254) in the following format:

Field Number Field Description Bytes Position Start/End

1 LACS Indicator 01 254/254

2 LACS Code 02 255/256

Description of Return Codes

LACS
Indicator

Code Description

Y A LACS Record Match – The input record matched to a record in the master file. A new address could
be furnished.

N 00 No Match – The input record COULD NOT BE matched to a record in the master file. A new
address could not be furnished.

Y 14 Found LACS Record: New Address Would Not Convert at Run Time – The input record matched to a
record in the master file. The new address could not be converted to a deliverable address.

S 92 LACS Record: Secondary Number Dropped from Input Address – The input record matched to a
master file record, but the input address had a secondary number and the master file record did
not. The record is a ZIP+4 street level or highrise match.

F

False Positive: Address matched to a false positive.

LACSL I N K ™ RETURN CODES

Page L-1

Appendix L - Residential Delivery Indicator (RDITM)
The Residential Delivery Indicator (RDI™) add-on enables users to determine whether a given address is classified as a
residential or a business address.

The RDI process may be run directly or as part of a standard address lookup.

Users can run RDI directly via the isBusinessZip API, as shown in the example below. The required input parameters are a
9-digit ZIP Code or 11-digit DPC, the corresponding length (9 or 11), and the path to the two RDI lookup tables.

The return code indicates whether the ZIP Code was determined to be a business address. (See the return code
descriptions below.) Negative values indicate processing errors.

0 – Residential

1 – Business

2 – Mixed

-1 – Failed to allocate memory for lookup table.

-2 – Failed to open lookup file.

-3 – Failed to read lookup file.

-4 – Lookup table size invalid.

RDI processing can be enabled as part of a standard address lookup. To enable RDI when making a call to CorrectA or a
similar function, append the RDI flag "Rd" to the errcode argument before making the call. The result of the RDI lookup
will be indicated in the last character of the Stringaddress argument (Stringaddress[259]). A 'Y' indicates a confirmed
residential delivery point, and an “N” indicates a non-residential address. The blank character indicates that an RDI lookup
could not be performed due to a ZIP + 4 mismatch.

int rc;
char zip = "106011827"
int length = 9;
char file9_path = "C:/ MyRDIDataPath/rts.hs9";
char file11_path = "C:/MyRDIDataPath/rts.hs11";

rc = isBusinessZip(zip,length,file9_path,file11_path);

Page M-1

Appendix M- SuiteLink™

The SuiteLink™ add-on product enables CorrectAddress users to append secondary (suite) information to a business address
provided that the input address is determined to be a highrise default record. (See Appendix B for details on highrise
default addresses.)

SuiteLink processing is enabled automatically as part of a standard address lookup. The result of the SuiteLink lookup will be
indicated in the 246-th byte of the Stringaddress parameter (Stringaddress[245]). A 'Y' indicates a SuiteLink match, where
secondary information is automatically appended to the output address. An ‘N’ indicates no match. A blank (‘ ’) indicates
that no lookup was performed.

	USPS Return Codes ... C-1
	Standard...D-1
	U.S. Results Layout.. F-1
	PROCESSOR CONFIGURATION FILE..G-1
	Geocoding Error Codes / Footnotes ...H-1
	Delivery Point Validation Indicators ...J-1
	LACSLink™ Return Codes ..K-1
	Chapter 1 - Introduction
	NEW AND IMPROVED IN VERSION 10.0

	Chapter 2 - Installation
	SYSTEM REQUIREMENTS
	WINDOWS INSTALLATION
	UNIX/LINUX INSTALLATION
	CorrectAddressData.zip

	Chapter 3 - Registering the Software
	MANUAL WINDOWS REGISTRATION (WINDOWS)
	UNIX REGISTRATION

	Chapter 4 -Before Starting
	ABOUT SHARED OBJECTS
	You must have a Java Runtime Environment or JDK installed as well as a C compiler to create a shared object. This is available upon request.

	AVAILABLE UNIX OS AND COMPILERS
	RUNNING THE BUILDER
	SETTING UP SYSTEM CONFIGURATION
	BUILDING SHARED OBJECTS
	RUNNING DEMO PROGRAMS ON UNIX-BASED SYSTEMS
	In the [Output] section, you can return only certain fields.

	Chapter 5 - Application Programming Interface (API)
	MAIN FUNCTIONS
	GEOCODING FUNCTIONS
	AUXILIARY/WRAPPER FUNCTIONS
	FUNCTION SPECIFICATIONS
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	C, C#, Java, MySQL, PERL, PHP, PostgreSQL, SQL Server (via wrapper), VB.NET
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	C, C#, Java, PHP, SQL Server (via wrapper), VB.NET

	C O R R E C T A C A S S
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	C, C#, Java, PERL, PostgreSQL, SQL Server (via wrapper), VB.NET

	C A P C O N V
	Description
	C prototype
	Parameters
	Return codes
	Remarks
	C, C#, Java, Oracle, SQL Server (via wrapper), VB.NET

	D P C U T I L I T Y
	Description
	C prototype
	Return codes
	Remarks
	C, C#, Java, VB.NET

	F I N D C I T Y C O U N T Y
	Description
	C prototype
	Return codes
	Remarks
	C, C#, Java, MySQL, Oracle, PERL, PHP, Ruby, SQL Server (via wrapper), VB.NET

	F I N D C I T Y S T A T E
	Description
	C prototype
	Return codes
	Remarks
	C, C#, Java, Oracle, VB.NET

	F I N D S T A T E C O U N T I E S
	Description
	C prototype
	Return codes
	Remarks
	C, C#, Java, PHP, Ruby, VB.NET

	F I N D Z I P C I T Y
	Description
	C prototype
	Return codes
	Remarks
	Examples
	C, C#, Java, Oracle, PERL, PostgreSQL, PHP, Ruby, SQL Server (via wrapper), VB.NET

	G E T B U I L D D A T E
	Description
	C prototype
	Parameters
	Return codes
	Remarks
	Examples
	C, C#, Java, VB.NET

	G E T B U I L D D A T E C A N A D A
	Description
	C prototype
	Parameters
	Return codes
	Remarks
	Examples

	G E T C A V E R S I O N
	Description
	C prototype
	Parameters
	Return codes
	C, C#, Java, VB.NET

	G E T M U N I P R O V
	Description
	C prototype
	Return codes
	Remarks
	C, C#, Java, VB.NET

	I S B U S I N E S S Z I P
	Description
	C prototype
	Return codes
	Remarks
	C, Java

	L O T U T I L I T Y
	Description
	C prototype
	Return codes
	Remarks
	C, C#, Java, VB.NET

	P A R S E A D D R E S S
	Description
	C prototype
	Return codes
	Remarks
	Examples
	C, C#, Java, Oracle, SQL Server (via wrapper), VB.NET

	P R I N T P S F O R M 3 5 5 3
	Description
	C prototype
	Parameters
	Return codes
	C, C#, Java, Oracle, PERL, SQL Server (via wrapper), VB.NET

	R U N C A B A T C H
	Description
	C prototype
	Parameters
	Return codes
	C

	S T R E R R O R C A
	Description
	C prototype
	Parameters
	Return codes and error codes
	Remarks
	C, Java, Oracle

	G E T E R R C O D E S T R I N G
	Description
	C prototype
	Parameters
	Return codes and error codes
	Remarks
	C#, VB.NET

	U N L O A D D A T A
	Description
	C prototype
	Parameters
	Return codes and error codes
	Java

	FREEHASHTABLE
	Description
	C prototype
	Parameters
	Return codes and error codes
	Remarks
	Examples
	Java

	T I G E R C A
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	C, C#, Java, MySQL, PERL, PHP, PostgreSQL, SQL Server (via wrapper), VB.NET

	G E O C O D E
	Description
	C prototype
	Return codes and error codes
	Remarks
	C, C#, Java, Oracle, PERL, PostgreSQL, SQL Server (via wrapper), VB.NET

	G E T C E N T R O I D
	Description
	C prototype
	Return codes and error codes
	Remarks
	C, C#, Java, VB.NET

	D B 2 C O R R E C T A
	Description
	C prototype
	Remarks
	DB2

	D B 2 T I G E R C A
	Description
	C prototype
	Return codes and error codes
	Remarks
	DB2

	C O R R E C T A C A T
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	Ruby

	C O R R E C T A C A T 2
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	Ruby

	C O R R E C T A C A S S O R A C L E
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	Oracle

	C O R R E C T A C O B O L
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	COBOL (see Lawson Integration later in this chapter), PERL

	C O R R E C T A N
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	C

	C O R R E C T A O R A C L E
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	Oracle

	F I N D C I T Y C O U N T Y C O B O L
	Description
	C prototype
	Return codes
	Remarks
	COBOL

	T I G E R C A C A T
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	Ruby

	T I G E R C A C A T 2
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	Ruby

	T I G E R C A N
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	C

	T I G E R C A O R A C L E
	Description
	C prototype
	Return codes and error codes
	Remarks
	Examples
	Oracle
	CALLING CORRECTADDRESS FROM C
	CALLING CORRECTADDRESS FROM .NET
	CALLING CORRECTADDRESS FROM JAVA
	CALLING CORRECTADDRESS FROM PERL
	$CC –O –c –I/$PERL_INCLUDE_DIRECTORY CAPerl_wrap.c
	perl -e 'use Config; print $Config{archlib};'
	gcc –O –c –fPIC –I/usr/lib/perl5/5.8.0/i386-linux-thread-multi/CORE CAPerl_wrap.c
	ld –G –o CAPerl.so *.o

	CALLING CORRECTADDRESS FROM RUBY
	a. def cityCounty(zip)
	b. def zipCity(city, state)
	c. def correctA(address)
	The “CorrectA” function is normally used for this. However, due to some limitations either in Ruby or in the “DL” library, a function cannot be called which takes more than 15 arguments. Hence, the “CorrectAcat” function is used, which takes 6 argumen...
	a. zc = @ca["FindZipCity", "ISsSs"]
	int FindZipCity(const char*, char*, const char*, char*)
	b. @newcity = DL.malloc(28 * DL.sizeof("C")) @zip = DL.malloc(1000 * DL.sizeof("C"))
	c. ret_val, rs = zc.call(city, @newcity, state, @zip)
	d. puts "\n\n=================================="
	e. DL::FREE

	CALLING CORRECTADDRESS FROM PHP
	cc –fpic –DCOMPILE_DL=1 –I/usr/local/include –I/usr/include/php – I/usr/include/php/Zend –I/usr/include/php/main –I/usr/include/php/TSRM –O –c CAphp.c

	INTERFACING CORRECTADDRESS VIA LAWSON
	cc -O -bmaxdata:0x11E1A300 -c testCA.c
	java –jar BuildLib.jar
	cob -zo libCorrectA.so *.o testCA.o -e loadshObj
	CALL “{location_of_the_object}/libCorrectA.so”
	CorrectACobol
	Input parameters:
	Input parameter:
	Example (AIX):
	rm testCA.o

	INTERFACING CORRECTADDRESS VIA ORACLE
	INTERFACING CORRECTADDRESS VIA MICROSOFT SQL SERVER
	sp_addextendedproc ‘{exported_function_name}’, 'c:\Program Files\Microsoft SQL Server\MSSQL\Binn\xpCorrectA.dll'

	INTERFACING CORRECTADDRESS VIA MYSQL
	Creating User-Defined Functions (UDFs)
	char *xxx(UDF_INIT *initid, UDF_ARGS *args,char *result, unsigned long *length,char *is_null, char *error);
	Building a Shared Object
	gcc –O –c CorrectA_udf.cc
	ld –G –o libCorrectA.so *.o
	Executing User-Defined Functions
	create function CorrectASQL returns string soname “libCorrectA.so”;
	create function parseCA returns string soname “libCorrectA.so”;
	create function FindCityCountySQL returns string soname “libCorrectA.so”;
	set @ca2 = space(60)
	create function parseCityCounty returns string soname “libCorrectA.so”;
	select parseCityCounty(@ca2,’0’);

	INTERFACING CORRECTADDRESS VIA POSTGRESQL
	Output record layout:
	Output record layout:

	INTERFACING CORRECTADDRESS VIA DB2
	call CallCorrectA('445 Hamilton Ave','Ste 608','10601') @

	Chapter 6 - CorrectAddress Graphical User Interface (GUI)
	CHANGING YOUR SETUP INFORMATION
	USING THE CORRECTION UTILITY
	CorrectAddress will correct misspellings to street addresses and city names. If a valid ZIP Code is supplied, city and state can be omitted. If the valid city and state are supplied, a ZIP Code can be omitted.

	USING THE CITY/ZIP FINDER
	USING THE BATCH PROCESSOR WIZARD
	Retained Fields Firm/Recipient Name Urbanization Name Delivery Line 1

	USING THE SQL GENERATOR
	1. Firm Name

	Chapter 7 - Troubleshooting
	GENERAL TROUBLESHOOTING ISSUES
	PLATFORM-SPECIFIC ISSUES
	Link Command: gcc -m64 -mpowerpc64 -shared -fPIC -o libCorrectA.so *.o
	gcc -c -g -O2 -I. -fPIC *.c
	# ldd -u libCorrectA.so

	LANGUAGE-SPECIFIC ISSUES
	javac javaCANativeDispatcher.java javaCallFI.java
	Use /usr/java/j2re1.x.x/bin/java -jar BuildLib.jar

	Appendix A- PS Form 3553
	Appendix B- Glossary of Postal Terms
	Carrier Route
	CASS
	Check Digit
	Cityname
	Congressional District Code
	County Name
	County Number
	Delivery Line 1
	Delivery Line 2
	Delivery Point Alternate Records
	DMM
	DPBC
	Dual address
	Early Warning System
	eLOT
	False Positive Records
	Error Codes
	Finance Number
	Firm/Recipient Name
	FIPS codes (state, county, congressional district)
	FSA
	General Delivery addresses
	Highrise addresses
	LACS
	Municipality
	PBSA
	Point of Call (PoC) Address Data
	Postal Code
	Postal Code Address Data (PCAD)
	Post-Directional
	Pre-Directional
	Preferred City Name
	Primary Number
	Province
	Questionable Address
	Return Code
	Secondary Abbreviation
	Secondary Name
	Secondary Number
	State Code
	Street Name
	Street Number
	Street Suffix
	TIGER/Line
	Unique ZIP code
	Urbanization
	ZIP code
	ZIP Addon (+4)

	Appendix C- Return Codes and Error Codes
	USPS RETURN CODES
	USPS ERROR CODES
	CANADA POST RETURN CODES
	ZIP+4 data files:
	City/State data files:
	eLOT data file:
	EWS data file:
	DPV data files:
	SuiteLink data files:
	ZIPmove data files:

	ADD-ONS
	Geocoding Files:

	Appendix E - Postal Discount Rates
	Appendix F - Results Record Layout
	U.S. RESULTS LAYOUT

	Appendix G- Batch Processor Configuration
	PROCESSOR CONFIGURATION FILE
	RUNNING BATCH PROCESSOR AT COMMAND-LINE PROMPT:

	BATCH JOB CONFIGURATION FILES
	GENERAL ORGANIZATION
	SECTIONS [THREAD]
	[INPUT]
	[OPTIONS]
	[OUTPUT]
	[ADDRESSVALUES]
	ADDITIONAL OUTPUT FIELDS
	DPV fields
	LACSlink fields
	RDI fields

	ENABLING RUNCABATCH SUPPORT FOR CANADA DATA
	[COUNTRY]
	[USADATAPATH]
	[CANADADATAPATH]
	[USAGEODATAPATH]

	Appendix H- Geocoding
	GEOCODING ERROR CODES / FOOTNOTES
	GEOCODING CONVERSION

	Appendix I - Custom Options
	Appendix J - Delivery PointValidation(DPV™)
	DELIVERY POINT VALIDATION INDICATORS
	DELIVERY POINT VALIDATION (DPV) CONFIRMATION INDICATOR
	DELIVERY POINT VALIDATION (DPV) CMRA INDICATOR
	DELIVERY POINT VALIDATION (DPV) FALSE POSITIVE INDICATOR
	DELIVERY POINT VALIDATION (DPV) NO-STAT INDICATOR
	DESCRIPTION OF DELIVERY POINT VALIDATION (DPV) FOOTNOTES
	DELIVERY POINT VALIDATION (DPV) No-STAT REASON CODE
	6 – Secondary Required - The address requires secondary information.
	DELIVERY POINT VALIDATION (DPV) VACANT INDICATOR
	DELIVERY POINT VALIDATION (DPV) PBSA INDICATOR
	DELIVERY POINT VALIDATION (DPV) DROP INDICATOR
	DELIVERY POINT VALIDATION (DPV) THROWBACK INDICATOR
	DELIVERY POINT VALIDATION (DPV) NON-DELIVERY DAY FLAG
	NON-DELIVERY DAY VALUE
	DELIVERY POINT VALIDATION (DPV) NO SECURE LOCATION
	DELIVERY POINT VALIDATION (DPV) DOOR NOT ACCESSIBLE
	DELIVERY POINT VALIDATION (DPV) ENHANCED RETURN CODES

	Appendix L - Residential Delivery Indicator (RDITM)

