
QAS Batch
API Guide

Copyright

All copyright and other rights in this manual and the licensed programs described in
this manual are the property of Experian Ltd save for copyright in data in respect of
which the copyright belongs to the relevant data provider.

No part of this manual may be copied, reproduced, translated or reduced to any
electronic medium or machine readable form without the written consent of Experian
Ltd.

Microsoft, Word and Windows are trademarks of Microsoft Corporation.

© Experian Ltd. 2019

Version 7, Revision 1, 2019

Contacts and Support

For resolutions to common issues, answers to frequently asked questions and hints
and tips for using our products, contact our regional Support teams:

www.edq.com/documentation/contact-support

For more information about us and to get in touch:

www.edq.com

https://www.edq.com/documentation/contact-support/
https://www.edq.com/

Contents

Introduction 1
What Is QAS Batch API? 1
What Does This Guide Contain? 2
Accompanying Documentation 3

Data Guide 3
API Help 4

Technical Support 4
Web 4
E-mail / Telephone 4

QAS Batch API Installation 5
Overview 5
System Requirements 5
Licences 7

What Is A Licence Key? 7
Adding A Licence Key 7
Expiry Warnings 8
Evaluations 8

Installing QAS Batch API 9
Windows 9
UNIX 9

Installing And Updating Data 10
Windows 10
UNIX 12
About Data Files 15

Activating Metered Datasets 17
Testing Your API Installation 17

The QAS Batch API Process 21

i

How QAS Batch API Matches Addresses 21
The Returned Address 25
Retrieving DataPlus Information 26
Using QAS Batch With Suppression Additional Datasets 27
Address Match Codes 29

Match Success 30
Match Confidence Level 34
Postal Code Action Indicator 35
Address Action Indicator 36
Information Bits 36
Generic Information Bits 36
Extended Information Bits 37

Matching Rules 38
Generic Matching Rules 38
Essential Matching Rules 39
Preferred Matching Rules 39
Close Matching Rules 39
Acceptance Matching Rules 40
Further Rules 40
Dataset-Specific Matching Rules 41

API Function Reference 43
Data Types 43

Function Return Values 44
Parameters (Input) 44
Parameters (Output) 44
Calling Functions From Languages Other Than C 45
Passing By Value Or By Reference 45
NULL Termination 45
Padding 46
Example Of Data Types 47

Multithreaded Integrations 48
Pseudocode Example Of QAS Batch API 49
QAS Batch API Functions 54

QABatchWV_ApplyUpdateCode 59
QABatchWV_ChangeLayout 61

ii

QABatchWV_Clean 63
QABatchWV_Close 66
QABatchWV_CompareAuditCode 68
QABatchWV_CounterClose 70
QABatchWV_CounterOpen 72
QABatchWV_CounterReport 74
QABatchWV_CounterReportLength 76
QABatchWV_CountryCount 78
QABatchWV_DataSetCount 80
QABatchWV_DataSetInfo 82
QABatchWV_DPVGetCode 84
QABatchWV_DPVGetCodeLength 86
QABatchWV_DPVGetInfo 87
QABatchWV_DPVSetKey 89
QABatchWV_DPVState 90
QABatchWV_EndSearch 92
QABatchWV_FormattedLineCount 94
QABatchWV_GetAuditCode 96
QABatchWV_GetCountry 98
QABatchWV_GetDataSet 100
QABatchWV_GetDPFieldCount 102
QABatchWV_GetDPFieldInfo 104
QABatchWV_GetDPFieldName 107
QABatchWV_GetFormattedLine 109
QABatchWV_GetLayout 111
QABatchWV_GetLicenceInfo 113
QABatchWV_GetMatchInfo 115
QABatchWV_GetUnusedInput 117
QABatchWV_LayoutCount 120
QABatchWV_LayoutLineCount 122
QABatchWV_LayoutLineElements 124
QABatchWV_LicenceInfoCount 127
QABatchWV_Open 129
QABatchWV_RunMode 132
QABatchWV_Shutdown 134
QABatchWV_Startup 135

iii

QABatchWV_UnusedLineCount 137
QAErrorHistory 139
QAErrorLevel 141
QAErrorMessage 142
QASystemInfo 143

QAS Batch API Configuration 147
Format Of A Configuration File 148
Configuring QAS Batch API 150
QAWSERVE Settings 151
Checking Dataset Installation 151

InstalledData 151
DataMappings 152
CorrectAApiLoc 154
CorrectADataLocUSA 154
CorrectADataLocCAN 155

QAWORLD Settings 156
Defining Processing Options 156

CountryBase 156
CountryRevert 158
LogErrors 159
LogFile 160
BatchTimeout 161
CleaningAction 162
SearchLevel 163
CacheMemory 164
CorrectACacheLevel 165
NamesTolerance 166
OemCharacterSet 167
DatasetPrecedenceOrder 168
Certification 169

Setting The Input Address Format 170
InputLineCount 170
InputLineN 170

Setting The Output Address Format 172
AddressLineCount 172

iv

AddressLineN 172
CapitaliseItem 173
AbbreviateItem 174
ConditionalFormat 175
AbbreviateAddr 176
CompatibilityFormatting 177
MultiValueDPSeparator 177

QALICN Settings 178

Appendix A: Error Code Listing 179
Appendix B: Data Checker Utility 186
Appendix C: Suppression Data – Uses and Benefits 187
Appendix D: Analysing Costs of Suppression Data 191

About Clicks 192
Permanent Clicks 192
One-Off Clicks 192
Dual Clicks 193
Tracking Suppression 193

Suppression Hierarchy 194
Paying For Suppression Data 195
Managing Suppression Costs 197

To-Date Billing 197
Temporary Counters 198
Estimate Mode 198

Troubleshooting 199

Appendix E: Names Matching Tolerance Levels 200
Appendix F: Delivery Point Validation 205

DPV Seed Addresses 205
Encountering A Seed Address 205
Multithreading Considerations 207

Appendix G: Generic Information Bits 209
Appendix H: Integration Example 215

Integrating XML reports 215

v

Glossary Of Terms 219
Index 227

vi

Introduction

What Is QAS Batch API?
QAS Batch API cleans the address records in your database by verifying them
against the official postally-correct address files for the relevant country. Cleaned
records are assigned a match result, based on the accuracy of the original
address.

QAS Batch API does not directly access your file of address records. You must
extract the records that you wish to check, pass them through QAS Batch API one
at a time and, where appropriate, subsequently update your database.

QAS Batch API can make use of several datasets, each of which contains full
address information for one country. You can choose to search on one or more of
these datasets, depending on the addresses that you have. Some datasets are
enhanced further with Additional Datasets, which allow you to access a variety of
additional data, such as Names, Business or Utility information. For more
information about available Additional Datasets for your data, see the relevant
Data Guide.

In order to maximise the ease of integrating this product, it is supplied with the
following interfaces and test harnesses:

l C API;

l C#.NET;

l Java.

To facilitate easy integration, Experian Data Quality also supplies detailed sample
code in those languages.

These interfaces, test harnesses and sample code are for use on Windows
systems only.

1

What Does This Guide Contain?
In this manual you can find information on:

1. Installing QAS Batch API and Updating Data

The section beginning on page 5 describes how to install QAS Batch API,
update data, and test your installation. It also provides information on licence
keys.

Running the test harness supplied with the API should verify that you have
installed the API correctly. It will also give you an idea of what QAS Batch API
can do, and the type of results it can produce. See page 18 for more
information.

2. HowQAS Batch API Works

The section of the manual starting on page 21 describes how QAS Batch API
searches on your addresses and the match codes it produces. Reading this
should clarify the values that are returned by some of the API functions.

3. Pseudocode Example

The pseudocode example on page 49 demonstrates a possible
implementation of the API functions.

4. Using the API Functions

The listing of QAS Batch API functions starts on page 54. You do not have to
use all of the functions.

It is recommended that you integrate the API in stages, beginning with the
startup and shutdown functions, then adding the open and close functions,
followed by address search and retrieval facilities. Any other functions can be
added in the appropriate places. You should also make use of the system
functions, especially QAErrorMessage. This function enables you to see the
description of any errors that occur, and as such should be called after any
function returns an error. A full list of error codes starts on page 179.

2

5. Configuring your API

Before running your integrated API, you need to give QAS Batch API:

l the name and location of your dataset(s);

l the level of address cleaning you want to undertake;

l the format of your output address;

l the name of your log file, if there is one.

This information should be specified in the configuration file. Details of how to
do this start on page 147.

6. Using QAS Batch API With Suppression Data

This section describes the benefits of using QAS Batch API with AUS or GBR
Suppression data, and how to pay for its use.

Accompanying Documentation
This section provides a list of the documentation supplied with QAS Batch API
and where it can be located.

Data Guide

A Data Guide is supplied with each dataset you purchase. This guide provides
data installation instructions, dataset-specific information and search tips for each
dataset, and should be used in conjunction with the other documentation
supplied with QAS Batch API. Any functionality unavailable in QAS Batch API is
also covered.

Under Windows, you have the option to install the Data Guide during data
installation. The guide is installed to C:\Program Files\Experian\Data Guides by
default. If you choose not to install the guide, it can be accessed from the Docs
folder on the Data installation CD.

Under UNIX, you should copy across the Docs folder to a location of your choice.

3

API Help

An API help system is provided in the QAS Batch API program group in the Start
menu. This help system provides similar information to that included in this
manual.

Technical Support
Experian Data Quality provides three forms of Technical Support.

Web

If you encounter problems using QAS Batch API, that are not answered in the
documentation, please visit the Experian Data Quality support website
http://support.qas.com. Answers to questions about all aspects of Experian Data
Quality products are contained within a FAQ section and a searchable knowledge
base.

E-mail / Telephone

If you cannot locate the required information on http://support.qas.com, Experian
Data Quality Technical Support can be contacted via e-mail or telephone. The
Technical Support contact details for each local Experian Data Quality office can
be found at http://support.qas.com/contact.

In order that your request can be dealt with as efficiently as possible, it would be
helpful if you could have your Experian Data Quality account reference number
and the version number of the software you are using to hand.

4

http://support.qas.com/
http://support.qas.com/
http://support.qas.com/contact

QAS Batch API
Installation

Overview
Follow these steps to install QAS Batch API:

1. Install the product. See "Installing QAS Batch API" on page 9.

2. Once the product installation is complete, you can install Experian Data
Quality data. See "Installing And Updating Data" on page 10.

System Requirements
To run QAS Batch API you will need the following:

Operating System
- Windows

The following Windows operating systems are supported:
l Server machines:

l Windows Server 2016 64-bit
l Windows Server 2012 R2 64-bit

l Desktop machines:
l Windows 7 Professional SP1 64-bit
l Windows 10 Pro 64-bit

For more information about downloading Service Packs,
see http://support.microsoft.com.

5

http://support.microsoft.com/

Operating System
- UNIX

The following UNIX operating systems are supported:
l Sun Solaris 64bit (Sparc) - 10, 11
l IBM AIX 64 bit (Power 5) - 6.1
l Linux (x86-64) - kernel: 2.6.18; GCC: 4.1.2
l Linux (x86-64) - kernel: 2.6.32; GCC: 4.4.7

Available memory 1GB (minimum), 4GB (recommended)

Disk Space At least 100MB of drive space is required to install the QAS
Batch API program files.
Further space is required to install the dataset files. Refer
to the Data Guide supplied with your data for details about
how much space you will need for each dataset.
You also need to ensure that there is sufficient disk space
for QAS Batch API to process your addresses. The space
used depends on the size and type of input database, but
as a general rule you should ensure that space equivalent
to at least the size of your database is available.

Other A CD/DVD drive (this is required for installation only, and
only if you are installing your product/data via installation
disks).
An internet connection (if using Electronic Updates, or for
DPV unlocking in the event of encountering a seed
address when using the USA dataset); this does not have
to be on the machine running QAS Batch API.

6

Licences

What Is A Licence Key?

A licence key is required for each combination of data and product that you
purchase. Failure to enter a valid licence key means that the product will be
unable to use the data. You should have already received licenses from Experian
Data Quality for any products and datasets you have purchased. If you have not
received them, please contact Technical Support. See "Technical Support" on
page 4 for more information.

Adding A Licence Key

Windows Installer Users

If you have chosen to install/update your data using installation disks rather than
Electronic Updates, the data installer prompts you to enter a licence key for each
product / data combination for which you have purchased data. For example, if
you are using both QAS Pro and QAS Batch API and have purchased GBR data
for both products then you will be asked to enter a separate GBR licence key for
each product.

See "Installing And Updating Data" on page 10 for more information.

Non-Windows Installer Users

If you are running QAS Batch API on UNIX, or you do not install data using the
Windows installer utility, then you will need to manually edit qalicn.ini to insert the
licence keys supplied with your data. Each key should appear on its own line,
starting on the first character of the line.

Ensure that you enter licence keys only for the product associated with the
licence file you are editing.

7

Expiry Warnings

If a licence has expired, it is not possible to open an instance of the API
(QABatchWV_Open).

You can use QABatchWV_DataSetInfo to view how long is left before the data
expires.

Evaluations

Evaluation licence keys set time limits on the usage of data. To continue using the
product and data after these time limits have been reached, you must purchase a
full licence.

To upgrade from an evaluation licence to a full licence, contact Experian Data
Quality Sales using the contact details provided at the beginning of this guide, or
complete the Purchase Licences form on http://support.qas.com.When you have
received your new licence key from Experian Data Quality, you should enter it in
qalicn.ini.

8

http://support.qas.com/

Installing QAS Batch API

Windows

QAS Batch API has been supplied to you on CD-ROM, and comes with an
installation program called setup.exe. When you run setup.exe, the QAS Batch
API libraries and associated files are installed to the location of your choice (the
default is C:\Program Files\Experian\QAS Batch API).

To run the installation program:

1. Insert the QAS Batch API CD into your CD-ROM drive.

2. Select Run... from the Start menu.

3. In the dialog box that appears, type d:\setup, where d is the drive letter for
your CD-ROM drive, and press Enter. Once the installation program starts,
follow the on-screen instructions to install the API.

UNIX

The QAS Batch API image contains both shared object and static library compiles
of QAS Batch API. Copy the contents of the relevant folder from the image to the
location of your choice, for example /opt/qas batch/.

You can choose to install QAS Batch API as a 32-bit or 64-bit version. You should
select the version that is correct for your integration.

When you wish to run your integrated application, you should ensure that the
following files are in the same directory as the application executable:

l country.ini

l qaworld.ini

l qawserve.ini

l qalicn.ini

l qalcl.dat

l static library or shared object of libqabwvcd

l 32-bit or 64-bit shared object of libCorrectA (USA or CAN dataset only)

9

Installing And Updating Data
Once you have installed the program, you can install Experian Data Quality data
to use with QAS Batch API.

To ensure that your data is compatible, all data for a country must be the same
version, and should be installed at the same time.

Each dataset has an expiry date and must be updated periodically. Experian Data
Quality provides regular updates of the datasets as and when updated data is
available. Each update should be applied promptly, otherwise the data may
expire and the product will become unusable.

Before you begin the data installation process, you should ensure that you
have received all of the licence keys for each dataset you have purchased.
During the installation you are prompted to insert the licence key for each
dataset that you want to install.

See "Licences" on page 7 for more information about licences.

Windows

To install or update data on Windows, we recommend that you use Electronic
Updates, which automatically ensures that your Experian Data Quality products
are using the latest data available. For more information about Electronic
Updates, visit support.qas.com. If you have chosen to use Electronic Updates, see
"Electronic Updates" on page 11.

Alternatively, to install or update data using any data installation disks that you
may have received, follow these steps:

1. Insert the first Experian Data Quality Data CD or DVD into the relevant drive,
click the Start menu and select Run.

2. In the dialog box that appears, type d:\setup, where d is the drive letter for
your CD or DVD drive, and press Enter.

3. Once the installation program starts, follow the on-screen instructions to
install or update your data.

10

http://support.qas.com/

4. If you have purchased additional datasets (such as Names or Suppression
additional data) or DataPlus sets to enhance your address data, you should
select the relevant data in the Data Setup dialog. Once the address data has
been installed, you will be prompted to install all the additional data that you
have selected.

This information is only relevant when using GBR data.

NCOA data

According to the terms of your third-party licence agreements, once you have
performed an initial clean of your data using QAS Batch API, NCOA Update and
NCOA Suppress data are tied to the machine that QAS Batch API is installed
on.

If you do need to move these datasets to a different machine after you have
performed an initial clean, you should contact Experian Data Quality Technical
Support who will guide you through the process. See page 4 for Technical
Support contact details for your region.

Telephone Preference Service (TPS) and Monthly Pointer data

If you wish to use Telephone Preference Service or Monthly Pointer data, you
must install and use Electronic Updates (EU) to do so, due to the fortnightly
data update cycle.

Electronic Updates

If you have chosen to install or update your data using Electronic Updates, follow
these steps:

1. Install Electronic Updates (if you have not yet done so), following the on-
screen instructions to install and run the EU client.

2. Use the EU client to install and/or update any datasets (including additional
datasets) that you have purchased to use with QAS Batch API.

3. Once you have configured and run the EU client, all future data updates will
automatically be downloaded to your computer.

For more information about how to use Electronic Updates and the EU client, refer
to the Electronic Updates documentation.

11

UNIX

Installing New Data

The first time you install a dataset you must do the following:

1. Copy the data files from the data CD / DVD to a suitable location. If your
dataset is supplied on more than one disk, then repeat for each disk,
including any additional datasets associated with your dataset. See "About
Data Files" on page 15 for more information about the data files you require.

If you transfer the data files using FTP you must transfer them as binary
files, otherwise the data may be corrupted.

2. Navigate to /opt/qasBatch/ (or wherever you installed QAS Batch API) and
open the qawserve.ini configuration file in a text editor such as vi.

3. Under the [QADefault] section add a line to the InstalledData setting,
specifying the location of the data you just copied. The setting is in the format:

InstalledData={dataset identifier},{path}

For example, if you had just copied the GBR dataset to /opt/qasData/gbr/ the
line would read:

InstalledData=GBR,/opt/qasData/gbr

For more information about this setting see page 151.

4. In the same section add at least one line to the DataMappings setting, to
specify the combinations of additional datasets you wish to use. The setting is
in the format:

DataMappings={data mapping identifier},{dataset/group name},
{dataset+additional datasets}

For example, if you had the United Kingdom With Names additional dataset to
enhance your GBR dataset you might add two lines, one without the
additional dataset and one including it:

DataMappings=GBR,United Kingdom,GBR
+GBN,United Kingdom With Names,GBR+GBRNAM

For more information about this setting see page 152.

12

5. This information is only relevant when using USA data.

If you are installing the USA dataset you must also specify the location of the
supplementary USA QAS Batch data and libraries which are supplied on
separate disks to the USA data. In the same section of qawserve.ini, add the
CorrectADataLocUSA setting and the CorrectAAPILoc setting. For
example:

CorrectADataLocUSA=/opt/qasData/USA
CorrectAApiLoc=/opt/qasData/USA

You do not need to use the CorrectAApiLoc setting if you installed the
supplementary libraries to the same location as your core QAS Batch
API libraries, or to a location specified in your environment variable.

For more information about these settings, see "CorrectAApiLoc" on page 154
and "CorrectADataLocUSA" on page 154.

6. This information is only relevant when using CAN data.

If you are installing the CAN dataset you must also specify the location of the
supplementary CAN QAS Batch data and library which are supplied on
separate disks to the CAN data. In the same section of qawserve.ini, add the
CorrectADataLocCAN setting and the CorrectAAPILoc setting. For
example:

CorrectADataLocCAN=/opt/qasData/CAN
CorrectAApiLoc=/opt/qasData/CAN

You do not need to use the CorrectAApiLoc setting if you installed the
supplementary library to the same location as your core QAS Batch
API libraries, or to a location specified in your environment variable.

For more information about these settings, see "CorrectAApiLoc" on page 154
and "CorrectADataLocCAN" on page 155.

7. Open the qalicn.ini configuration file in a text editor such as vi. Add all of your
supplied licence keys for your purchased Experian Data Quality datasets to
the end of this file. For more information see "Licences" on page 7.

13

Updating Existing Data

To update a previously installed dataset, overwrite your existing files with those
provided on the data update CD / DVD. To ensure that your datasets are
compatible, all data for a country must be the same version, and should be
installed at the same time. The supplementary data and libraries for the USA and
CAN datasets must also be copied from the QAS Batch data disks. The following
section details the files which comprise each dataset.

If you transfer the data files using FTP you must transfer them as binary files,
otherwise the data may be corrupted.

14

About Data Files

You have been supplied with at least one dataset. Each dataset that you have
purchased comprises at least three files. The main dataset file has the .dts
extension, and is accompanied by index files.

The files you receive for each dataset are:

<dataset identifier>.dts
<dataset identifier>.tpx
<dataset identifier>.zlx
<dataset identifier>.kfx (datasets compatible with the Keyfinder engine only)
<dataset identifier>.zlb (certain datasets only)

The dataset identifiers are three characters long and for most datasets are
derived from the country's ISO code. For example, the UK dataset identifier is
'GBR', and the Australia dataset identifier is 'AUS'. For datasets that do not
represent a particular country's address data, and therefore are not associated
with an ISO code, the dataset identifier is a unique three character identifier. For
example, the Gazetteer dataset identifier is 'LPG'.

Dataset identifiers are used throughout the API and its documentation as unique
three character identifiers for datasets.

Additional datasets are available for some datasets. The additional datasets have
the .ads extension and are supplied with index files. The filenames are derived
from the dataset identifier with which they are associated. For example, the
following files comprise GBR Business data:

gbrbus.ads
gbrbus.tpx
gbrbus.zlx

DataPlus sets are also available for some datasets and additional datasets. They
have the .dap extension, and their filenames are derived from the dataset
identifier. For example, the filename for the GBR Government DataPlus set is
gbrgov.dap, and the filename for the AUS Mosaic Code DataPlus set is
ausmos.dap.

15

This information is only relevant when using USA or Canada data.

The USA and CAN datasets require supplementary data and libraries for use in
QAS Batch API. For Windows users, these files are configured automatically by
the Windows installer. UNIX users must copy the data files manually from the
‘Data’ directory of the USA/CAN Batch data disks (along with the UNIX libraries
that are supplied separately), and update their configuration files as described in
"Installing New Data" on page 12.

16

Activating Metered Datasets
A click is the unit of measurement for a metered licence. Depending on how such
a licence is set up, a click may be decremented from a meter when an address is
matched in the dataset, or when data is appended to your matched records. For
Suppression meters, a click may be decremented when an address record is
suppressed or when a Suppression DataPlus flag is returned.

If you purchased a metered dataset (such as a Suppression additional dataset),
you will need to activate these clicks before you can output any cleaning results
from QAS Batch API.

For more information about metered datasets and how to use them, see
"Appendix D: Analysing Costs of Suppression Data" on page 191.

Testing Your API Installation
QAS Batch API is supplied with a simple text-based application written in C, and
can be used to verify that you have installed QAS Batch API correctly, and also
demonstrate some of the API functionality. It is not intended to be used as a
commercial application. For Windows 32-bit API installations it is known as
batwv.exe, for Windows 64-bit installations it is known as batwv64.exe, and for
UNIX installations it is known as batwv.

On UNIX, the main library must be accessible as a shared object. To ensure this
is the case, you can register the library with the following steps (you will need to
be logged in as root):

1. Navigate to /opt.

2. Copy libqapwccd.so (the main library) from the /lib directory in your
installation location to /usr/lib.

3. Run ldconfig (or your system's equivalent).

QAS Batch API for Windows is also supplied with additional test harnesses written
in other languages:

32-bit 64-bit

Java BatchTestHarness_Java.jar BatchTestHarness64_Java.jar

C#.NET BatchTestHarness_CS.exe BatchTestHarness64_CS.exe

17

Although these versions are not described in detail in this manual, they can also
be used to verify that you have installed QAS Batch API correctly.

If you want to run either the 32-bit or 64-bit Java test harness on a 64-bit
machine, the loaded Java virtual machine must be the same version as the test
harness. If the virtual machine and the test harness are not the same version,
the test harness will not run successfully.

Running The Test Harness

The C test harness enables you to obtain a matching address and match code
from an input address that you type in on the command line.

If you are using Windows, run the test harness from the QAS Batch API installation
directory.

If you are using UNIX, go to the "apps" folder in the directory where the program
files were installed and type ./batwv at the command prompt.

The test harness appears, looking similar to this:

Once you have selected a layout from the list, try typing an address, separating
each part from the next with a comma, and press Enter. For example:

44 Rushton St, Victoria Park, WA 6100

18

The test harness returns various details, concluding with the matching address (if
there is one).

For example, entering '44 Rushton St, Victoria Park, WA 6100' (with the Australia
dataset) might return this:

The details shown are:

l the address you supplied;

l the return value from the function QABatchWV_Clean (see page 63);

l the generic match code assigned to the address (see page 29);

l the dataset-specific information, which comprises the dataset-specific
information bits and the extended dataset-specific information bits (see the
Data Guide supplied with your data for more information about these
information bits);

l the dataset identifier of the dataset used;

l the postal code;

l the returned address;

l any unused components from the input address.

The supplied address is a duplication of the elements you typed in, while the
returned address is a matched address as it is stored in the dataset.

QABatchWV_Clean returns 0 in this case, indicating that the function was
successful.

19

A match code beginning R913 indicates that:

l the match success letter is R;

l the match confidence level is 9;

l the postal code action indicator is 1;

l and the address action indicator is 3.

Match success letter R means that a full address and postal code has been found,
the 9 means that QAS Batch API is confident that it has found the correct address,
the 1 shows that the postal code has not been changed and the 3 shows that
either a partial or a full address has been returned. For more information see
"Address Match Codes" on page 29.

The output postal code is 6100. The dataset identifier, which is a three-letter code
that identifies the dataset, is AUS.

There are no unused components from the address you typed in.

The QAS Batch API may behave differently, depending on your current
configuration settings.

20

The QAS Batch API
Process

Before QAS Batch API can search on an address, it needs to know what level of
searching to undertake, and how to return any matches that it finds. You specify
these options in the configuration file.

The configuration file contains many settings which govern the basic processing
that QAS Batch API performs, and allow you to define options such as the default
dataset, cleaning options, and how the output address should look. The main
configuration file used within the API for these settings is called qaworld.ini. For
more information about configuration see page 147.

How QAS Batch API Matches Addresses
QAS Batch API goes through a complex process when it attempts to match your
address against the dataset(s). Understanding the process helps you to get the
most out of the QAS Batch API.

Matching Keys

This information is only relevant when using APR data.

If you are using QAS Batch API with the AddressBase® Premium dataset, QAS
Batch API can perform key matching against your input data before carrying out
the address matching process. This can potentially improve the confidence level
of any address matches obtained. Key matching can be carried out against the
following two types of data:

21

l Unique Property Reference Numbers (UPRNs);

l Unique Delivery Point Reference Numbers (UDPRNs).

In order to match this information against AddressBase Premium data, you must
first specify which fields in your input data contain UPRNs or UDPRNs. See
"Setting The Input Address Format" on page 170 for information on how to do this.
Once key matching has been completed, QAS Batch API begins the normal
address matching process.

Address Matching

The QAS Batch API process consists of five stages:

l Stage 1: Pre-process address

l Stage 2: Match country

l Stage 3: Match Street, Organisation, PO Box and Place

l Stage 4: Match Premises

l Stage 5: Select Best Match

22

The diagram below summarises the QAS Batch API process.

QAS Batch API may return an address as unmatched if the place and street are
matched, but the premises is not matched.

Stage 1: Pre-process Address

The first thing QAS Batch API does is attempt to put the input address into a
standard format. The input address has been submitted as a single line, with
address elements separated by commas. For example:

3 Mornington Mews, County Grove, London,SE5

23

QAS Batch API splits this address at the position of each comma so that the
address looks like this:

3 Mornington Mews
County Grove
London
SE5

Stage 2: Match Country

Once it has completed its formatting, QAS Batch API tries to identify the country
that the input address relates to. QAS Batch API does this by matching the
contents of the last two lines against a list of countries, ignoring non-alphabetic
characters.

If a country is identified in the input address, QAS Batch API goes on to verify that
the relevant dataset is installed. If it is not, QAS Batch API will mark the address as
'Country not available' (see "Match Success" on page 30) and stop the search.

If no country is found in the address, then QAS Batch API tries to move on to the
next stage using the default dataset. If no default dataset is set, QAS Batch API
will reject the address as 'Unidentified country' and stop the search.

Stage 3: Match Street, Organisation, PO Box And Place

Depending on the country, QAS Batch API may expand street abbreviations,
which means that all street descriptors such as 'Rd' or 'Ave' are expanded to
'Road' and 'Avenue', so that they match the descriptors in the dataset.

If you have specified that address fields occur on particular input lines, then QAS
Batch API will use these to help decide which elements it can match with.

If you have not made any specifications of this type, QAS Batch API will make
some assumptions, in particular that a place or a postal code will not occur in the
first address field and that street elements will always occur before place
elements. QAS Batch API will make one or more attempts to locate a valid
sequence of street and place combinations in the address. At the same time, if
QAS Batch API can locate PO box or organisation names along with a valid place,
it will take these to be potential valid matches.

QAS Batch API will also break single words out of address lines in order to locate
the best combination of elements for matching.

24

Stage 4: Match Premises

By this stage, QAS Batch API has matched the input address as far as the street.
To find the full verified address it also needs to match the property information.

After matching a place and a street, QAS Batch API compares the property
information in the input address against all the premises in the dataset for that
street. If no match is achieved, the input address is marked as 'partial address
found' (see "Match Success" on page 30).

If your addresses contain property information, but the dataset you are cleaning
against does not, QAS Batch API does not alter the property information; it
retains it and returns it. Ensure that the addresses are formatted to your
requirements before you write them back to your database.

Stage 5: Select Best Match

QAS Batch API now retrieves the full verified address and assigns it a 'quality'
score by comparing it with the original input address.

During this comparison, QAS Batch API evaluates a number of matching rules
and assigns the match a score. If there is more than one match, this process is
repeated for all the matches. If there are two or more matches that have the
highest score, QAS Batch API marks the input address as either 'Partial address'
or 'Multiple match', depending on the matching rules that were passed.

The Returned Address
QAS Batch API returns matched addresses in the format that you specify. You can
decide which address elements appear on which line, and which elements are
capitalised or abbreviated. QAS Batch API always returns address elements
using the string data type, even when there are fields which may only contain
numeric data.

You define the output address format in the configuration file.

25

Some countries have several versions of an address element (for example, the
Netherlands has NEN, TPG and Official street names). QAS Batch API uses the
version supplied in the input to secure a match and returns the version
configured in the output. For this reason, an address can be verified as correct
even if there appear to be differences between the input and output addresses.

Retrieving DataPlus Information
DataPlus can provide a wide range of information relating to an address, as a
supplement to the QAS Batch API. Currently, DataPlus information is only
supplied with certain datasets; if you do not have it, skip the rest of this section.

DataPlus information is contained in datasets. Each piece of information relates to
a locality, a postal code, or, when the data requires higher resolution, to the
delivery point (letter box).

DataPlus handles the information in terms of a code and its related description (if
there is one). For example, a dataset containing MOSAIC information might
include one or more demographic details.

DataPlus details can only be viewed once you have selected and displayed a full
address from QAS Batch API. For example, if you have the Australia dataset with
the associated latitude and longitude DataPlus set, and you have configured QAS
Batch API to return DataPlus information, a search on '314 miller st, north sydney,
nsw 2060' might return the following address:

314 Miller Street,
NORTH SYDNEY NSW 2060
-33.8313 151.208

In this example, the latitude and longitude appear beneath the address. If you
want to retrieve DataPlus information with your addresses, you should configure
your address layout so that it contains lines specifically for DataPlus.

See the Data Guide supplied with your dataset for further information on
DataPlus.

26

USA DataPlus and DPV

This information is only relevant when using USA data.

One of the requirements of CASS accreditation is that DPV functionality is active
(see "Appendix F: Delivery Point Validation" on page 205). USPS requires all
CASS-certified software to return a +4 code only when the address has been
DPV-confirmed. If an address is not DPV confirmed, a +4 code will not be
returned, and by extension, any DataPlus items you have configured as part of
the address output format may not be returned either.

More DataPlus elements will be returned when using QAS Compatibility
Formatting mode because an additional matching routine is attempted for
addresses that do not DPV-confirm. For more information see the USA Data
Guide.

Using QAS Batch With Suppression Additional
Datasets

In order to achieve the most effective results when using QAS Batch API with
Suppression data, we recommend following these guidelines:

l Before running your input data against Suppression data, carry out a
standard address cleaning session on your data first. If you have purchased
any other additional datasets (for example Names, or Utilities data) these can
also be configured in this initial session.

Running a Suppression session against addresses that have already been
cleaned and verified means that QAS Batch API is more likely to find good
suppression matches.

l Do not run your input data against both Suppression data and other
additional datasets during the same session. A Suppression session should
use only the core country dataset, and your selected Suppression datasets.

Running a Suppression session at the same time as other additional datasets
may prevent QAS Batch API from finding good suppression matches in some
cases.

The recommended workflow for using QAS Batch API with Suppression data is
shown in the diagram below:

27

SuppressionWorkflow

More information about configuring QAS Batch API, including setting up
additional datasets can be found in "QAS Batch API Configuration" on page 147.

28

Address Match Codes
During a QAS Batch API search, the nature of processing and any changes made
to the address are recorded in a match code. The match code is returned as a
result of a call to the function QABatchWV_Clean (see page 63). The first four
characters of the match code provide the following information:

Match Success 1 upper case letter.
This specifies how well QAS Batch API matched
the address.

Match Confidence Level 1 single digit.
This tells you how accurate QAS Batch API thinks
the match is.

Postal Code Action 1 single digit.
This indicates any action that QAS Batch API has
performed on the postcode.

Address Action 1 single digit.
This describes what action has been performed
on the address.

Information Bits 1 eight digit number provides general match
information, including details of the matching
process and reasons for the confidence level.
These are the Generic Information Bits.
1 sixteen digit number provides dataset-specific
match information. These are the Extended
Information Bits.

This is what a full match code looks like:

29

For more information about the generic information bits, see "Appendix G:
Generic Information Bits" on page 209. For more information about the dataset-
specific and additional dataset-specific information bits, see the relevant Data
Guide.

Match Success

The letter at the beginning of the match code indicates how successfully QAS
Batch API was able to match your input address to an address in an Experian
Data Quality dataset.

The values of the match success letter are split into two ranges which indicate
specific types of information:

A-D The input address was not processed. The reason for this is
specified by the letter returned.

K-S The input address was processed, and the match quality is
indicated by the letter returned.

The match success letter only indicates what type of matching address has been
found in the data, it does not indicate whether this address is a good match for
your input data. This information is indicated by the "Match Confidence Level"
(see page 34)

If QAS Batch API returns a Q or R match, along with a match confidence level of 9,
you can be confident that it has found the right match.

Due to restrictions matching against Suppression datasets, all successfully
suppressed records can be considered a confident match, regardless of the
returned match code. The match code refers only to matches against the main
address data or other, non-suppression datasets.

Match Success Letters A-D

A
Unprocessed

Results could not be returned for the input address. This
reflects an internal processing issue. For example, if DPV
processing has been locked because you encountered a
seed address, then all US addresses will return an A match.
See page 205 for more information about DPV.

30

B
Blank

This means that QAS Batch API could either find no data in
the input address or too insignificant an amount of data to
return an address.

C
Country not
available

This match letter is returned when your input address
contains a country name and the appropriate dataset is not
installed.
For example, if you do not have the Australia dataset, this
address would return a C match:

7 Speed Avenue, Five Dock NSW 2046, AUSTRALIA
If you want to restrict QAS Batch API's ability to match against
countries, use the CountryRevert configuration setting
(see page 158).

D
Unidentified
country

A match letter of D is assigned to an address record when
QAS Batch API is unable to ascertain the record's country of
origin and no default country has been configured (see the
CountryBase configuration setting on page 156).

Match Success Letters K-S

K
No address or
postcode could
be derived

This match letter is used when QAS Batch API cannot find
any data which matches your input address. This might occur
if the input address does not contain a country name and
does not match anything in the default dataset.
For example if you processed "42 Durlston Square" against
the GBR dataset, QAS Batch API would return a K match.
This is because QAS Batch API cannot find any matching
street names and has no other information (such as a locality
or postcode) to search on.

L
Postcode found,
but no address
could be derived

This match letter is returned if QAS Batch API derives a valid
postal code from your input address, but no address
information.

31

M
Multiple addresses
found, but no
postcode

QAS Batch API returns this match letter if the input address
matches more than one address in the dataset.
For example, the following address finds four matches in the
GBR dataset:

146 High Street, Cambridge
Because the address exists in the localities of Sawston,
Cottenham, Chesterton and Landbeach, QAS Batch API
cannot determine which is the desired match. As all four
potential matches have different postal codes and no single
postal code can be returned, QAS Batch API marks the
address as an M match.

N
Multiple addresses
found with
postcode

This type of match is returned when QAS Batch API finds
more than one matching address within a postal code. This
is most likely to occur where a country's postal codes cover
large areas, such as in Australia.
For example, this Australian address has two possible
matches, because it exists in the localities of Kingsholme
and Ormeau:

25 Cliff Barrons Rd, QLD, 4208

O
Partial address
found, but no
postcode

In this case QAS Batch API has found a partial address
which matches your input. However, it cannot return a full
postal code with it, because the partial address is covered by
more than one postal code. This might occur if your input
address has a missing or invalid property number. QAS
Batch API cannot determine the correct property number,
and returns as much of the address as it can.
For example, in the street of this UK address, number 70
does not exist:

70 Glebe Road, Long Ashton, Bristol
As no postal code is included in the input address, QAS
Batch API does not know which of the street's two possible
postal codes to return, and produces this output:

Glebe Road, Long Ashton, Bristol

32

P
Partial address
found with
postcode

QAS Batch API has found a partial address which matches
your input. In addition, either the input postal code was valid,
or QAS Batch API has managed to find a single postal code
for the partial address.
For example, if this Australian address is searched on:

Robertson St, Sherwood
QAS Batch API is able to add a postal code and state code,
but the missing property number prevents it from returning a
full address.

Q
Full address found,
but no postcode

This occurs when QAS Batch API finds a full address which
matches your input data, but cannot find a full postal code to
go with it. This is most likely to happen if a dataset does not
include postal codes for every address.

R
Full address
and postcode
found

In this case, QAS Batch API has made a full match, either by
simply verifying a correct input address, or by locating a full
address from partial input data.
These examples all return R matches:

14 Carnaby St, London
Grimmstr 5, 79848 Bonndorf
Sintelweg 10, 9364 Nuis
19 Meyer Place, Melbourne, Victoria 3000

However, an R match only signifies that a full address and
postal code have been returned; it does not necessarily
mean that the address is the one you want. You can gauge
the likelihood of a correct match from the match confidence
level.

33

S
Address matched
to one or more
Suppression
datasets

This match code is only applicable when QAS Batch API has
matched an address against GBR or AUS Suppression data.
When this match code is returned, all returned address
information and information bits will be cleared other than
the suppression information bit.
If one or more DataPlus elements are configured in the
output layout, this match code is no longer returned, and
instead all address and suppression infobits are returned,
including the suppression information bit.

Due to restrictions matching against Suppression
datasets, all successfully suppressed records can be
considered a confident match, regardless of the returned
match code. The match code refers only to matches
against the PAF or other, non-suppression datasets.

Match Confidence Level

The first digit in the match code indicates how confident QAS Batch API is about
the match it has returned.

There are three levels of confidence: low, intermediate and high. As the
completeness of the returned address is determined by the match success letter,
QAS Batch API could return an R match with low confidence, indicating that
although it has found a complete and correct address, it is not sure that it is the
same address as the input.

Confidence is determined by the matching rules. Low confidence indicates that
the essential matching rules were not satisfied. Intermediate confidence shows
that the less important rules were not satisfied, or another check failed (for
example, the input address is not in the expected order).

0: Low Confidence

QAS Batch API sets the confidence level to 0 if it finds a match which differs
considerably from the input address. For example, take this UK address:

Rich & Carr, LE1 9GX

34

QAS Batch API returns its nearest guess (Rich & Carr, PO Box 15, Leicester, LE1
9GX). As this is a full address, it is given an R match success letter. However, as
the input address did not specify PO Box details, QAS Batch API is not confident
that this is the right match.

5: Intermediate Confidence

Confidence level 5 is returned when QAS Batch API is reasonably sure that it has
found the right match. This might occur if the input address is slightly inaccurate.
Consider this UK input address:

Churchill Green House, Churchill Green, Churchill, Winscombe,
Avon, BS25 5QH

In this example, the building name is incorrect (it should be Churchill House).
However, QAS Batch API is able to find the correct address. Only the variance in
building name prevents a high confidence match.

If a record has the confidence reduced to Intermediate for more than one
reason, this does not reduce it further, and it remains as Intermediate
confidence.

9: High Confidence

QAS Batch API returns a 9 when it is sure that the output address matches the
input data. This happens when an input address is fully accurate, or when partial
address data is detailed enough (for example, exact property number, street and
locality) to have the remaining address details appended. Consider this UK input
address:

Castle Gayer Cottage,Leys Lane,Marazion,Cornwall,TR17 0AQ

In this example, the address is spelt correctly and is found in the data exactly as
typed. A High Confidence match is returned.

Postal Code Action Indicator

The second digit in the match code signifies the action that QAS Batch API has
performed on the postal code.

There are four possible values for this digit:

35

Value Description

3 The existing postal code has been corrected.

2 A new postal code has been added.

1 The existing postal code was already correct.

0 No action was taken.

Address Action Indicator

The third digit in the match code tells you what QAS Batch API has done to the
address.

There are three possible values for this digit:

Value Description

3 Part of or a whole address was returned. The amount of address is
signified by the match success letter.

2 The existing address was enhanced. No significant information has been
removed, but some information has been added.

0 No action was taken as the supplied address was not matched.

Information Bits

The hexadecimal information bits provide details of each match made by QAS
Batch API. They consist of:

l an eight digit number which provides generic information;

l a sixteen digit number which provides extended information. This information
is dataset-specific.

Generic Information Bits

The generic information bits provide detailed information on how well an address
match conforms to the QAS Batch API matching rules. See "Matching Rules" on
page 38 for more information.

36

For a full list see "Appendix G: Generic Information Bits" on page 209.

Extended Information Bits

Extended information bits are dataset-specific. They are added together in the
same way as generic information bits. Refer to the Data Guide supplied with your
data for further information about dataset-specific information bits.

37

Matching Rules
This section provides a guide to the considerations that take place when QAS
Batch API is matching addresses. There are a number of predefined rules
governing the results that the QAS Batch API produces. These are listed below:

l Generic matching rules

l Essential matching rules

l Preferred matching rules

l Close matching rules

l Acceptance matching rules

l Further rules

l Dataset-specific matching rules

Information on which matching rules have been applied to an address is supplied
using information bits.

Generic Matching Rules

This core set of rules applies to the matching process for all countries:

l Elements must roughly occur in the expected predefined order (the order is
defined in each country's data files).

l Any numbers appearing before the place elements in an input address
should be matched.

l Numbers should associate correctly with accompanying elements. For
example, in a UK address the building number is expected before the street
name.

l At least one place element should be found in the input address.

38

If these rules are not satisfied, match confidence will be reduced to intermediate
unless the rule is specifically suppressed in the particular country's dataset. For
example, if a place is not supplied for a UK address, the match confidence will not
be reduced if a match can be made by using the supplied postcode. Normally,
postal codes represent larger areas, and confidence would be reduced in those
circumstances. Regardless of any change in match confidence, the information
bits set within the generic match code for a returned address indicate the rules
that have failed.

Essential Matching Rules

These rules state the criteria which must be satisfied. If one of these rules is not
met, a match of low confidence will be returned. These rules include conditions
such as:

l There must be an input element defining the location of the address (a town,
a postal code, etc).

l There must be an element defining the property information.

Preferred Matching Rules

These rules are criteria which should ideally be satisfied. These will be slightly
stricter than the Essential rules, for example:

l A PO Box number must be matched if one exists in the dataset.

l There must be some form of match with a street name if one exists in the
dataset.

l The postal code must match if none of the place elements in the dataset has
matched.

If any one of these rules is not satisfied, confidence in the address matched will
be intermediate at best.

Close Matching Rules

This is an additional set of rules which affect the confidence of a match to the
address under consideration. Strictness is roughly equivalent to the Preferred
rules, for example:

39

l Both the PO Box number and the corresponding place must match.

l At least one of the street descriptor and the locality elements must match.

l The sub-premises address element must make an exact match.

If one of these rules is not satisfied, confidence in the address matched will be
intermediate at best.

Acceptance Matching Rules

This is a set of rules applied by QAS Batch API at its address acceptance stage,
just before a final address is returned. These rules are only defined for some
datasets, and specify the strictest final criteria that an address match must satisfy.
These rules are only used when confidence has not previously been reduced for
any other reason. Example rules are:

l It was not necessary to change more than one character in the supplied street
name to obtain a match.

l All of the supplied multiple place and postcode-level elements matched.

If any one of these rules fails, confidence will be reduced to intermediate.

Further Rules

There is a further set of rules which are inherent to the code for all countries.
These rules are dataset independent, and all will cause the confidence to be
reduced to Intermediate if not satisfied.

l Elements must occur in a predefined expected order (the order is defined in
each dataset)

l All numbers appearing before the place elements in the input address must
be matched

l Numbers must associate correctly with the accompanying elements

l At least one place element must be found in the input address.

The information bits returned with an address indicate the rules that have been
enforced.

40

Dataset-Specific Matching Rules

Unmatched Input Text

This information is only relevant when using GBR or APR data.

When using one of the datasets listed above, QAS Batch API will downgrade
match success scores and confidence levels if it is unable to match some text in
the input address. This is designed to prevent misleading high confidence
matches being made to address records that share only a certain amount of text
in common with the input address.

Consider using QAS Batch API with United Kingdom or AddressBase® Premium
data with the following input address:

Quick and Speedy Dry Cleaning Ltd, 2-3 Clapham Common North Side,
London, SW4 0QL

Part of that input address would match to part of the following, postally correct
address:

Experian Ltd, George West House
2-3 Clapham Common North Side
London
SW4 0QL

When using other datasets, the equivalent result would be a full address match
with intermediate confidence. But when using one of the datasets listed above,
the match is not used due to the amount of unmatched input text. Instead we
receive a result similar to this:

George West House
2-3 Clapham Common North Side
London
SW4 0QL

The result is a partial address match which only includes elements from the
input address that can be matched with high confidence.

41

Additional Dataset-Specific Matching Rules

Since QAS Batch API is a multi-country address matching product, additional
rules are tailored for each dataset and are embedded in the data.

42

API Function Reference

This section introduces the QAS Batch API functions. It consists of the following
sections:

l Data Types

This section explains the QAS-specific data types that define the parameters
that the functions take.

l Multithreading Example

This section gives information about running several 'threads' of the
application simultaneously.

l Pseudocode Example

This section gives a programming language independent example of a QAS
Batch API implementation.

l API Functions

This section details the API functions in alphabetical order and lists them in
groups according to the type of function. It also provides a list of replaced
functions.

Data Types
There are a few QAS-specific data types which appear in the API and need some
explanation. These types define the parameters that the functions take and values
they return. They can be split into three categories:

l the values that are returned by the functions;

l the parameters that go into the functions;

l the parameters you get out of the functions.

43

Equivalent C data types are shown, but additional type modifiers are applied for
certain environments, such as Windows.

Function Return Values

QAS Batch API data type Description Equivalent C data type

INTRET integer int

LONGRET long integer long

VOIDRET no return value void

Parameters (Input)

QAS Batch API data type Description Equivalent C data type

STRVAL string char *

INTVAL integer int

LONGVAL long integer long

VOIDARG no arguments void

Parameters (Output)

QAS Batch API data type Description Equivalent C data type

STRREF string char *

INTREF integer int *

LONGREF long integer long *

44

Calling Functions From Languages Other Than C

While C is the language most commonly used when working with these API
functions, it is perfectly possible to work in other programming environments.
However, there are a few points which you should note. These are:

l Passing by Value or by Reference;

l NULL Termination;

l Padding.

Passing By Value Or By Reference

In normal C programming, function parameters can be passed either by value or
by reference.

You must pass a parameter in the way the function expects you to pass it. If you
pass a parameter by value when the function is expecting it to be passed by
reference then this might crash your program and will certainly produce incorrect
results.

l Strings are always passed by reference, whether they are input or output
parameters.

l Numbers are passed by value when they are inputs to the function. They are
passed by reference when they are outputs from the function.

NULL Termination

QAS Batch API is written in the C programming language. In C, all strings are
expected to be terminated with a NULL. The NULL character is the absolute
character 0 (zero), not ASCII '0'.

For the QAS Batch API functions, all parameters of type STRVAL must be NULL
terminated. Furthermore, all return parameters of type STRREF will be NULL
terminated.

In BASIC, for instance, string termination can be achieved by appending the
NULL characters to all the strings, as in this example:

MyString$ = "Hello" + Chr$(0)

45

Visual BASIC for Windows automatically ends all strings with a NULL
character, so performing this termination might not be necessary.

After an API function has returned a string, it might be necessary to strip off the
NULL character if it cannot be handled by the calling language.

In BASIC this could be achieved as follows:

nullOffset=INSTR(retBuffer$, CHR$(0))
IF nullOffset>0 THEN retBuffer$=LEFT$(retBuffer$, nullOffset -
1)

Padding

When an API function returns a result, it writes a NULL-terminated result string
into a buffer. You are responsible for creating this buffer. You must ensure that it is
big enough to hold any string which the function is likely to return.

Consider, for example, the programming language BASIC. In BASIC, strings are
not normally stored in fixed length memory blocks. Rather, they occupy only the
minimum amount of memory needed to store their value, which changes as the
string changes.

Therefore, before you pass a string into a function you must first 'pad' it out. This
means adding extra characters to the string in order to force the system into
allocating enough memory to hold any possible return string.

In BASIC you might pad a string with two hundred '+' characters, like this:

retBuffer$ = STRING$(200, "+")

Alternatively, you could create a string with two hundred space characters like
this:

retBuffer$ = SPACE$(200)

46

Example Of Data Types

The example below uses the function QABatchWV_DataSetInfo.

This is how the function prototype looks in the documentation:

INTRET QABatchWV_DataSetInfo
(INTVAL viHandle,
STRVAL vsIsoCode,
INTREF riDaysLeft,
INTREF riDataDaysLeft
INTREF riLicenceDaysLeft
STRREF rsVersion,
INTVAL viVerLength,
STRREF rsCopyright,
INTVAL viCopyrightLength);

The parameters viHandle and viVerLength are inputs to the function (in the form
of integers) and thus are passed by value. The parameter rsVersion is an output
parameter (in the form of a string), and consequently it is passed by reference.
Similarly, the parameter riDaysLeft is also passed by reference as it is output by
the function in the form of an integer.

In addition,QABatchWV_DataSetInfo returns a status value which indicates
either the successful execution of the function, or else failure - via an error code.

This function can be written in native C as:

int QABatchWV_DataSetInfo
(int viHandle,
char *vsIsoCode,
int *riDaysLeft,
int *riDataDaysLeft,
int *riLicenceDaysLeft,
char *rsVersion,
int viVerLength,
char *rsCopyright,
int viCopyrightLength);

47

On 32-bit system, Visual BASIC for Windows would declare this function as:

Declare Function QABatchWV_DataSetInfo Lib "QABWVED.DLL"
(ByRef viHandle As Long,
ByRef vsIsoCode As String,
ByRef riDaysLeft As Long,
ByRef riDataDaysLeft As Long,
ByRef riLicenceDaysLeft As Long,
ByRef rsVersion As String,
ByRef viVerLength As Long,
ByRef rsCopyright As String,
ByRef viCopyrightLength As Long)
As Long

On 64-bit system, Visual BASIC for Windows would declare this function as:

Declare Function QABatchWV_DataSetInfo Lib "QABWVGD.DLL"
(ByRef viHandle As Long,
ByRef vsIsoCode As String,
ByRef riDaysLeft As Long,
ByRef riDataDaysLeft As Long,
ByRef riLicenceDaysLeft As Long,
ByRef rsVersion As String,
ByRef viVerLength As Long,
ByRef rsCopyright As String,
ByRef viCopyrightLength As Long)
As Long

Multithreaded Integrations

It is recommended that multithreading is not implemented for QAS Batch

API integrations intended for USA address cleaning only. For more information,
see Multithreading Considerations.

Multithreading is the ability of an application to maintain several execution
'threads' of the same program in memory. This is a highly efficient method that
may be employed by an application to perform several concurrent tasks with the
minimum duplication of system resources.

48

QAS Batch API supports up to 32 separate API instance handles (see
QABatchWV_Open), each with up to 8 related search handles (see
QABatchWV_Clean). Attempting to use any more threads or instances will cause
QAS Batch API to return an error.

QAS Batch API uses additional RAM for each API instance and search handle
used. The amount required varies depending on which countries and datasets
you are using. You will need to ensure you have enough available memory to use
your required number of API instance handles and related search handles. If
there is insufficient memory available, QAS Batch API will return an ‘out of
memory’ error. To remedy this, you will need to reduce the number of instance
handles or search handles until this error is no longer returned. Note that if you
are using the 32-bit version of QAS Batch API, the operating system will limit the
amount of RAM to a maximum of 4GB per application.

When using QAS Batch API with more than one execution thread, there are
limitations in using the handles issued by the API. It is currently the integrator's
responsibility to enforce these rules, and instability or incorrect results may occur
if this advice is ignored.

1. API Instance Handles

You may use QABatchWV_Clean simultaneously with multiple threads and
the same API instance handle. Any other QAS Batch API function that accepts
an API instance handle may only be used by one thread for each API
instance handle at any one time.

2. Search Handles

Any search handle may only be used by one thread at any one time.

Pseudocode Example Of QAS Batch API
This section provides a conceptual overview of how a program using the QAS
Batch API works. The pseudocode used is programming language independent.

The example below uses many of the QAS Batch API functions, so that you can
see how they work together. In practice, however, you will not need to use every
function.

The pseudocode does not include all of the system functions. When using the API
within your application, you will probably want to use the function
QAErrorMessage after every function call in case an error occurs.

49

The conventions within the pseudocode are as follows:

Convention Meaning

/* Comment */ Italic text between asterisks and forward
slashes denotes a comment.

[QABatchWV_DataSetInfo] The functions which relate to each part of the
pseudocode appear in bold type on the right
hand side of the page.

[QABatchWV_Open (Close)] Some API functions are 'paired', i.e. when a
function is called, its pair must also be called at
some point. When a paired function is used in
the pseudocode, its pair appears in brackets
directly after the function name.

Pseudocode Listing

/* Before calling any function in the QAS Batch API , you must initialise it with
QABatchWV_Startup. If this function is called successfully, you can move on
to other functions. */
Initialise API [QABatchWV_Startup

(Shutdown)]
If initialisation failed
get textual description of error [QAErrorMessage]
display error
shut down API [QABatchWV_Shutdown]
exit procedure

end if
/* Once the API is initialised, you can either call the non-search related
functions, or open a search session. In this case, the program gets a list of
available layouts and asks the user to select one. */
Get number of available layouts [QABatchWV_LayoutCount]
for each layout
retrieve layout name [QABatchWV_GetLayout]
display layout name

end for
Ask user to select one of displayed layouts
/* A layout contains information such as the available datasets, the default
dataset, and the output address format. Now that the user has chosen a
layout, the program moves on to open an instance of the API, in order to
perform searches. */

50

Open an instance of the API [QABatchWV_Open
(Close)]

/* The open might fail for various reasons. The most common reason is that a
specified dataset is not installed. */
If open failed
get textual description of error [QAErrorMessage]
display error
close API instance [QABatchWV_Close]
shut down API [QABatchWV_ShutDown]
exit procedure

end if
/* You can open multiple QAS Batch API instances as required, but you must
ensure that each instance is closed with QABatchWV_Close before calling
QABatchWV_ShutDown. */

Repeat while there are more searches to perform
/* The following section is only required where USA specific Delivery

Point Validation functionality is active: */
If USA DPV component is locked [QABatchWV_DPVState]
get DPV lock code length [QABatchWV_

DPVGetCodeLength]
get DPV lock code [QABatchWV_DPVGetCode]
display lock code
Ask user for DPV unlock key
submit DPV unlock key [QABatchWV_DPVSetKey]

end if
/* End of USA-specific pseudocode*/
/* The program is now ready to perform address searches. The address must
be supplied to the search function, preferably with each address element
separated by a comma. Where the address comes from is up to the user: it
could be typed in manually, read from a database, or supplied by another
program. */
get input address
perform a search [QABatchWV_Clean

(EndSearch)]

51

/* On completion of a search, the following information is returned: a 28-
character match code, a postal code (if successfully matched), and a dataset
identifier indicating which dataset the address was matched against. What
happens next depends on how you want to use this information. You could
accept just the postal code, the complete matched postal address or nothing.
The decision you make will almost certainly be based on the match code. For
this example, the program assumes you wish to have the full matched postal
addresses returned for 'R' and 'Q' match types with a confidence level of 9. In
addition for 'P' and 'N' match types that have a confidence level of 5 or 9, you
wish to accept just the postal code. */
if match success letter = 'R' or 'Q' and confidence level
= 9

/* With an R or Q match code, you are happy to take the full address.
Therefore, you find out how many lines are in this address and read each line
one at a time. */

count lines in matched address [QABatchWV_
FormattedLineCount]

for each line in the matched
address
retrieve address line [QABatchWV_

GetFormattedLine]
end for

/* Now you do something with this matched address. This could be storing it
in a database or just displaying it on screen. This program does the latter. */

Display retrieved address
Else if match success letter = 'P' or 'N' and confidence
level = 9 or 5

/* In this case, you are only happy to accept the postal code returned by the
search function. */

display returned postcode
Else
display message "No acceptable match"

end if
/* You have done the search and processed the results. You now need to
clear the search results, ready for the next search. */
free resources used by search [QABatchWV_EndSearch]
/* The following section is only required where USA-specific Delivery

Point Validation functionality is active: */
If USA additional dataset-specific information bits
0x00000002 (DPV Disabled) or 0x00000004 (DPV seed
address) set for match

52

get DPV lock code length [QABatchWV_
DPVGetCodeLength]

get DPV lock code [QABatchWV_DPVGetCode]
display lock code
Ask user for DPV unlock key
submit DPV unlock key [QABatchWV_DPVSetKey]

end if
/* End of USA-specific pseudocode /*
/* When you require no more searches, you need to close this instance of the
API and shut down in order to exit cleanly. */
end repeat
Close instance of API [QABatchWV_Close]
Shut down API [QABatchWV_Shutdown]

53

QAS Batch API Functions
This section contains an alphabetical listing of the API functions. For each
function there is a brief explanation of what it does, followed by its prototype,
parameters, return value and any comments on its functionality.

The functions can be loosely split into the following groups:

l general functions, which open and close the API and provide program
information

l system functions, covering the whole library system to handle errors and
usage details

l search functions, which send the input addresses to the API and optionally
provide feedback

l retrieval functions, which return the number and contents of formatted and
unused address lines

l USA-specific DPV functions (see "Appendix F: Delivery Point Validation" on
page 205 for more information).

l suppression-specific functions (refer to the Australia With Suppression
Additional Data Guide or the United Kingdom With Suppression Additional
Data Guide for more information about Suppression).

There is also a list of replaced functions, for reference by users of previous
versions of QAS Batch API.

General Functions

These functions open and close the API and provide program information.

QABatchWV_Startup page 135 Initialises the API.
QABatchWV_Shutdown page 134 Closes down the API.
QABatchWV_LayoutCount page 120 Retrieves the number of

available configuration layouts.
QABatchWV_GetLayout page 111 Retrieves the name of a

configuration layout.
QABatchWV_ChangeLayout page 61 Changes the layout to a custom

one.
QABatchWV_Open page 129 Opens an instance of the API.
QABatchWV_Close page 66 Closes an instance of the API.

54

QABatchWV_CountryCount page 78 Returns the number of available
datasets.

QABatchWV_GetCountry page 98 Returns the name of a dataset.
QABatchWV_DataSetInfo page 82 Returns details of a dataset.
QABatchWV_DataSetCount page 80 Retrieves the number of

DataPlus sets, additional
datasets and keyfinder sets that
are associated with a dataset.

QABatchWV_GetDataSet page 100 Retrieves the DataPlus sets,
additional datasets and
keyfinder sets for a dataset.

QABatchWV_LicenceInfoCount page 127 Returns the number of lines of
licensing information available
for a specified dataset.

QABatchWV_GetLicenceInfo page 113 Returns a specified line of
licensing information.

QABatchWV_GetDPFieldCount page 102 Retrieves the number of
DataPlus fields that are
associated with a given
DataPlus or Additional dataset.

QABatchWV_GetDPFieldName page 107 Retrieves the code and name
for a specific DataPlus field for a
dataset.

QABatchWV_GetDPFieldInfo page 104 Retrieves information for a
specific DataPlus field for a
dataset.

System Functions

The QAS Batch API also includes four low-level system functions, which cover the
whole library system and are common across all QAS product APIs.

QAErrorMessage page 142 Expands a numeric error code
into a simple text explanation of
that error.

QAErrorHistory page 139 Provides more detailed
information about an error.

QAErrorLevel page 141 Indicates the severity of an
error and whether you should
take action on it.

55

QASystemInfo page 143 Lists system usage details,
such as what resources the API
has taken from your operating
system.

Search Functions

These functions send the input addresses to the API and return results, and free
resources used in the search.

QABatchWV_Clean page 63 Performs a search on an input
address.

QABatchWV_EndSearch page 92 Frees resources used by a
search.

Retrieval Functions

These functions return the number and contents of formatted and unused address
lines.

QABatchWV_LayoutLineCount page 122 Returns the number of address
lines available in the current
address layout.

QABatchWV_LayoutLineElements page 124 Returns a description of the
elements fixed to a particular line
of the address layout.

QABatchWV_FormattedLineCount page 94 Returns the number of formatted
lines that a search has resulted
in.

QABatchWV_GetFormattedLine page 109 Retrieves a single address line.
QABatchWV_UnusedLineCount page 137 Returns the number of unused

lines from the input address.
QABatchWV_GetUnusedInput page 117 Retrieves an unused address

line.
QABatchWV_GetMatchInfo page 115 Retrieves detailed match

information.

USA-Specific DPV Functions

This information is only relevant when using USA data.

56

The QAS Batch API includes various functions that are specific to the DPV system.
You only need to integrate these functions if you do not intend to use the
DPV Unlock Utility supplied with QAS Batch API:

QABatchWV_DPVGetCode page 84 Returns a DPV lock code when a
'seed' address has been
encountered.

QABatchWV_DPVGetCodeLength page 86 Returns the length of the DPV
lock code when a 'seed' address
has been encountered.

QABatchWV_DPVGetInfo page 87 Returns the information about the
DPV 'seed' address which is
required by the USPS to issue an
unlock key.

QABatchWV_DPVSetKey page 89 Allows an unlock key to be set
where DPV functionality is
disabled.

QABatchWV_DPVState page 90 Determines the state of the DPV
system.

Suppression-Specific Functions

This information is only relevant when using GBR or AUS data with

additional Suppression data.

The QAS Batch API includes eight functions that are specific to the use of
Suppression data. If you are using QAS Batch API with Suppression data for the
first time, Experian Data Quality recommends that you integrate these functions:

QABatchWV_GetAuditCode page
96

Extracts a text-based audit code
from the counters file on the disk
where QAS Batch API With
Suppression is installed.

QABatchWV_CompareAuditCode page
68

Compares the amount of clicks
used between two audit codes.

QABatchWV_CounterOpen page
72

Opens a counter tied to the
specified instance of QAS Batch.

QABatchWV_CounterReport page
74

Creates a report on click usage and
address cleaning since the counter
was opened.

57

QABatchWV_
CounterReportLength

page
76

Returns, in bytes, the size that the
XML report would be if created.

QABatchWV_CounterClose page
70

Closes an open counter by handle.

QABatchWV_ApplyUpdateCode page
59

Populates a counters file with post-
pay meters for each supported
Suppression set.

QABatchWV_RunMode page
132

Switches QAS Batch in or out of
Estimate mode.

Suppression data is only compatible with QAS Batch API version 6.10 and

later or 7.05 and later.

Replaced Functions

These functions should no longer be used by your application, although the QAS
Batch API retains them for backwards compatibility.

QABatchWV_Search See QABatchWV_Clean on page 63 for
the replacement function.

QABatchWV_GetUnusedLine See QABatchWV_GetUnusedInput on
page 117 for the replacement function.

QABatchWV_DataInfo See QABatchWV_DataSetInfo on page 82
for the replacement function.

QABatchWV_GetLayoutLine See QABatchWV_LayoutLineElements
on page 124 for the replacement function.

58

QABatchWV_ApplyUpdateCode

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Populates a counters file with post-pay meters for each supported Suppression
set. May also be used if the existing counters file has become corrupted or to add
extra Suppression DataPlus sets.

Pre-call Conditions

The API must be initialised. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_ApplyUpdateCode
(STRVAL vsUpdateCode);

Parameters

Argument Explanation

vsUpdateCode String containing counter update code.

Return Values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

59

Invalid copy
control code:

The update code that has been entered is incorrect. Check
that the code you entered is identical to the one that you were
supplied with by Experian Data Quality, and re-enter if
necessary. If the error persists, contact Experian Data Quality
Technical Support.

Related Functions:

QABatchWV_GetAuditCode

60

QABatchWV_ChangeLayout

Changes the layout to a custom one, provided as an argument. Also changes the
ADS list. The new layout and ADS list are provided by using strings rather than
sections in the .ini file. The country of the new layout cannot be changed by this
function.

Pre-call conditions

The API must be initialized and a specific instance should have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_ChangeLayout
(INTVAL viHandle,
STRVAL vsLayout,
STRVAL vsADSList);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsLayout String containing new layout (with '\n' at the end of each line).
"!" means leave the layout unchanged.

vsADSList List of ADS sets (comma-separated string).
"!" means leave the list of ADS sets unchanged.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

61

Bad handle: The handle passed to the parameter viHandle is not
valid.QABatchWV_Openmust be successfully called
prior to this function, and the handle returned in
viHandle should be used.

Format error: The layout or ADS list was in incorrect format.
Different country: The country of the layout was different than the current

one.

Related Functions:

QABatchWV_GetLayout

QABatchWV_LayoutCount

62

QABatchWV_Clean

Performs a search on the specified input address.

Pre-call conditions

The API must be initialised and a specific instance should have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_Clean
(INTVAL viHandle,
STRVAL vsSearch,
INTREF riSearchHandle,
STRREF rsPostcode,
INTVAL viPostcodeLength,
STRREF rsIsoCode,
STRREF rsReturnCode,
INTVAL viReturnLength);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsSearch Search string.

riSearchHandle Handle returned by search.

rsPostcode Postal code returned from search.

viPostcodeLength Maximum length of buffer to receive returned postal code.

rsIsoCode Dataset identifier.

rsReturnCode Match code brought back for the input address.

viReturnLength Maximum length of buffer to receive match code.

Return values

Either: 0 if call successful

Or: negative error code

63

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be
used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Call pending: QABatchWV_Clean has been called too many times with
the specified handle. Ensure thatQABatchWV_EndSearch
is called at the end of each search once the results have
been returned.

Invalid input item: There is a mistake in the input specification passed to
QABatchWV_Open (see InputLineCount and
InputLineN).

Comments

When you call QABatchWV_Clean with an input address, the search string
should be comma-separated so that QAS Batch API can distinguish between
address elements. For example:

15 Stoke Way, Edgbaston, Birmingham
25 Tattersalls Lane, Melbourne 3000

This function call passes back four values:

l Search handle. This is used to retrieve results pertaining to this search, with
the functions QABatchWV_GetFormattedLine, and QABatchWV_
GetUnusedInput. This parameter should be set to NULL if you do not want to
use search handles.

l The Match code. This indicates how successfully QAS Batch API has matched
your input address.

l Postal code. If QAS Batch API has found a valid postal code in your input
address, or has added a postal code to the address, it is returned in this field.

64

l Dataset identifier. This is the three-character alpha-numeric code that
identifies a particular dataset. The code will be that of your default dataset,
unless QAS Batch API has detected a different country name in the input
address. QAS Batch API will return the dataset identifier for that country name
even if the dataset is unavailable. QAS Batch API will only return a country
name for unmatched addresses if you set a default dataset.

A maximum of eight searches can be submitted at a time to each handle of the
API. If any more than eight are submitted simultaneously, an error will be
returned.

Related Functions:

QABatchWV_GetFormattedLine

QABatchWV_GetUnusedInput

QABatchWV_EndSearch

65

QABatchWV_Close

Closes down this instance of the API.

Pre-call conditions

An instance of the API has been initialised and been opened with QABatchWV_
Open, and no searches are in progress.

Prototype

INTRET QABatchWV_Close
(INTVAL viHandle);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

66

Comments

The error qaerr_CALLPENDING will be returned if this instance of the API has a
search in progress.

Related Functions:

QABatchWV_Open

67

QABatchWV_CompareAuditCode

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Compares two previously returned audit codes generated using QABatchWV_
GetAuditCode. An XML report is returned into the specified buffer.

Pre-call Conditions

The API must be initialised and as specific instance should have been started
with QABatchWV_Open.

Prototype

INTRET QABatchWV_CompareAuditCode
(INTVAL viHandle,
STRVAL vsAudit1,
STRVAL vsAudit2,
STRREF rsXmlReport,
INTVAL viXmlReportLength);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsAudit1 An audit code created by QABatchWV_GetAuditCode

vsAudit2 An audit code created by QABatchWV_GetAuditCode

rsXmlReport Returns the XML report into the specified buffer.

viXmlReportLength Maximum length of buffer to receive returned XML report.

Return values

Either: 0 if call successful

Or: negative error code

68

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be
used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

More Clicks
Needed:

If less than 10 clicks have been deducted since the first
audit code was generated, the error qaerr_
MORECLICKSNEEDED will be returned. See "Appendix A:
Error Code Listing" on page 179 for more information.

Comments

The two audit codes being compared must have both been created using the
QAS Batch installation that this function is being called from.

Related Functions:

QABatchWV_GetAuditCode

69

QABatchWV_CounterClose

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Closes an active counter handle, removing any stored statistics.

Pre-call Conditions

The API must be initialised and a specific instance should have been started with
QABatchWV_Open. A counter must have been initialised using QABatchWV_
CounterOpen.

Prototype

INTRET QABatchWV_CounterClose
(INTVAL viCounterHandle);

Parameters

Argument Explanation

viCounterHandle Handle for this instance of the counter.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad handle: The handle passed to the parameter viCounterHandle is not
valid.QABatchWV_CounterOpenmust be successfully
called prior to this function, and the handle returned in
riCounterHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

70

Comments

Any counter report that is required must be retrieved before the counter is closed
as all recorded statistics are deleted upon closure.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReport

QABatchWV_CounterReportLength

71

QABatchWV_CounterOpen

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Opens a new counter instance tied to the QAS Batch API instance supplied in
viHandle.

Pre-call Conditions

The API must be initialised and a specific instance should have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_CounterOpen
(INTVAL viHandle,
INTREF riCounterHandle);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

riCounterHandle Handle for this instance of the counter.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be
used.

72

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Invalid input item: There is a mistake in the input specification passed to
QABatchWV_Open (see InputLineCount and
InputLineN).

Comments

If viHandle is set to -1, the counter will count transactions from all open instances
of the QAS Batch API.

A counter tied to an instance of the QAS Batch API will be closed automatically if
the instance is closed.

Related Functions:

QABatchWV_CounterClose

QABatchWV_CounterReport

QABatchWV_CounterReportLength

73

QABatchWV_CounterReport

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Returns an XML report of the records cleaned and clicks used since the counter
was opened (see QABatchWV_CounterOpen)

Pre-call Conditions

The API must be initialised and a specific instance should have been started with
QABatchWV_Open. A counter should also have been opened using
QABatchWV_CounterOpen.

Prototype

INTRET QABatchWV_CounterReport
(INTVAL viCounterHandle,
STRREF rsXmlReport,
INTVAL viXmlReportLength);

Parameters

Argument Explanation

viCounterHandle Handle for this instance of the counter.

rsXmlReport Returns the XML report into a specified buffer.

viXmlReportLength Maximum length of buffer to receive returned XML report.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

74

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be
used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Comments

Though click information will not be returned if less than ten clicks have been
used since the counter was created (or since the last counter report was run),
match information will always be returned.

The XML report will be returned into the specified buffer.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReportLength

QABatchWV_CounterClose

75

QABatchWV_CounterReportLength

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Returns the length of the XML counter report that would be returned. This length
is given in bytes.

Pre-call Conditions

The API must be initialised and a specific instance should have been started with
QABatchWV_Open. A counter should also have been opened using
QABatchWV_CounterOpen.

Prototype

INTRET QABatchWV_CounterReportLength
(INTVAL viCounterHandle,
INTREF riXmlReportLength);

Parameters

Argument Explanation

viCounterHandle Handle for this instance of the counter.

riXmlReportLength Returns an integer of the report length in bytes.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

76

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be
used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReport

QABatchWV_CounterClose

77

QABatchWV_CountryCount

Retrieves the number of dataset identifiers available to this instance of the API.

Pre-call conditions

The API is initialised, and a specific instance has been started with QABatchWV_
Open.

Prototype

INTRET QABatchWV_CountryCount
(INTVAL viHandle,
INTREF riCount);

Parameters

Argument Explanation

viHandle Handle for this instance of the API. If the handle that is
passed to viHandle is 0, all datasets are used. If the handle
is passed, all datasets within the section are used.

riCount Number of datasets available.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

78

Comments

This function tells you how many datasets are available for this particular thread
of the API. The availability of datasets is determined by the configuration file
specified in QABatchWV_Open.

Once you have the number of datasets, you can call QABatchWV_GetCountry
as many times as is necessary to retrieve a description of each dataset.

Related Functions:

QABatchWV_GetCountry

79

QABatchWV_DataSetCount

Retrieves the number of DataPlus sets, additional datasets and keyfinder sets that
are associated with a dataset.

Pre-call conditions

The API is initialised. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_DataSetCount
(INTVAL viHandle,
STRVAL vsIsoCode,
INTREF riCount);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsIsoCode The identifier of the set for which information will be returned.

riCount Number of sets associated with a dataset.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

File error: The file specified in vsIniFile could not be opened.

80

Related Functions:

QABatchWV_GetDataSet

QABatchWV_DataSetInfo

QABatchWV_GetCountry

QABatchWV_CountryCount

81

QABatchWV_DataSetInfo

Returns information about a particular dataset.

Pre-call conditions

The API must be initialised. A specific instance must have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_DataSetInfo
(INTVAL viHandle,
STRVAL vsIsoCode,
INTREF riDaysLeft,
INTREF riDataDaysLeft,
INTREF riLicenceDaysLeft,
STRREF rsVersion,
INTVAL viVerLength,
STRREF rsCopyright,
INTVAL viCopyrightLength);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsIsoCode The dataset or additional dataset identifier for which
information will be returned.

riDaysLeft The lower of riDataDaysLeft and riLicenceDaysLeft.

riDataDaysLeft Number of days left until the first dataset expires.

riLicenceDaysLeft Number of days left until the first licence in the dataset
expires.

rsVersion Buffer to receive version information for the dataset.

viVerLength Maximum length of rsVersion.

rsCopyright Buffer to receive copyright information.

viCopyrightLength Maximum length of rsCopyright.

82

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to
this function, and the handle returned in riHandle should
be used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Invalid country: The string passed to the vsIsoCode parameter is not valid.
The dataset identifier of the dataset has to be specified in
the InstalledData configuration setting.

Comments

When you pass a dataset identifier (for example, 'AUS' for Australia) into this
function, it returns information about the dataset to which the dataset identifier
relates.

The parameter riDaysLeft contains the lower of riDataDaysLeft and
riLicenceDaysLeft. For example, if riDataDaysLeft is 60 and riLicenceDaysLeft is
90, the riDaysLeft parameter will contain 60.

The parameter rsCopyright contains copyright information for the dataset in
question. For example, the Australia dataset returns a copyright for Australia Post.

If you only want to see some of the information that can be returned from this
function, you can set return parameters to NULL. For example, if you only want to
see when the dataset is going to expire, you can set rsVersion and rsCopyright to
NULL.

Related Functions:

QABatchWV_CountryCount,QABatchWV_GetCountry

83

QABatchWV_DPVGetCode

This information is only relevant when using USA data.

Used to query the lock code generated by the product when DPV is disabled in
the event of a seed address being searched upon. It is this code that must be
reported back to Experian Data Quality, in order for Experian Data Quality to
generate a corresponding unlock key. Since the lock code varies in length,
QABatchWV_DPVGetCodeLength should be called in order to make sure the
buffer provided is large enough for the lock code.

Prototype

INTRET QABatchWV_DPVGetCode
(STRREF rsLockCode,
INTVAL viLockCodeLength);

Parameters

Argument Explanation

rsLockCode Buffer to receive lock code.

viLockCodeLength Length of provided buffer rsLockCode.

Return values

Either: 0 if successful (lock code has been stored in the supplied buffer).

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

84

Comments

When DPV is disabled by a seed address, QAS Batch API generates a variable-
length alphanumeric code which is required to unlock DPV. If you do not call
QABatchWV_DPVGetCodeLength to determine the length of the lock code then
the supplied buffer may not be large enough. If truncation occurs while populating
the buffer rsLockCode, this will be signalled in the error log. If an error occurs and
it is possible to populate the buffer rsLockCode, then this will be zero terminated.

85

QABatchWV_DPVGetCodeLength

This information is only relevant when using USA data.

Returns the length of the lock code generated by the product where DPV is
disabled in the event of a seed address being searched upon. This function
should be called before QABatchWV_DPVGetCode in order to ensure an
adequate buffer is supplied to that function to obtain the lock code.

Prototype

INTRET QABatchWV_DPVGetCodeLength
(INTREF riLockCodeLength);

Parameters

Argument Explanation

riLockCodeLength Length of the lock code.

Return values

Either: 0 if successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Comments

QAS Batch API generates an alphanumeric lock code when DPV is disabled. The
code can vary in length, so this function should be called before QABatchWV_
DPVGetCode in order to ensure an adequate buffer is supplied to that function
when obtaining the lock code.

86

QABatchWV_DPVGetInfo

This information is only relevant when using USA data.

Returns information about the DPV seed address which caused DPV to be
disabled. The USPS require this information to be submitted before an unlock key
can be issued.

Prototype

INTRET QABatchWV_DPVGetInfo
(INTVAL viDPVInfoType,
STRREF rsDPVInfo,
INTVAL viLength);

Parameters

Argument Explanation

viDPVInfoType Type of lock information to be returned.

rsDPVInfo Buffer to receive lock information.

viLength Length of provided buffer rsDPVInfo.

Return values

Either: 0 if successful (lock information has been stored in the supplied buffer).

Or: negative error code

Possible values of viDPVInfoType are:

Value Description

dpvlockinfo_DATE Returns the date the seed address was encountered.

dpvlockinfo_TIME Returns the time the seed address was encountered.

dpvlockinfo_SEED Returns the seed address that was searched upon.

dpvlockinfo_SESSION Returns the name of the session in use when the
seed address was encountered.

87

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Comments

If the DPV has not been disabled by a seed address, or if the status of the
DPV system cannot be determined, this function will return blank strings.

If truncation occurs while populating the buffer rsDPVInfo, this will be signalled in
the error log. If an error occurs and it is possible to populate the buffer rsDPVInfo,
then this will be zero terminated.

88

QABatchWV_DPVSetKey

This information is only relevant when using USA data.

Sets an unlock key to re-enable DPV functionality where the DPV functionality is
disabled (i.e. key supplied by Experian Data Quality following the reporting of the
corresponding lock code).

Prototype

INTRET QABatchWV_DPVSetKey
(STRVAL vsUnlockKey);

Parameters

Argument Explanation

vsUnlockKey Buffer containing the unlock key.

Return values

Either: 0 if successful (the unlock code has re-enabled the DPV system)

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Invalid key: The key specified in parameter vsUnlockKey is not the valid
key required to unlock the DPV system. The DPV unlock key
should be as provided by Experian Data Quality.

89

QABatchWV_DPVState

This information is only relevant when using USA data.

Determines whether DPV functionality is enabled, disabled, or not in use. This
information can also be determined on a per-search basis through the use of the
additional dataset-specific information component of QAS Batch API's return
code.

Prototype

INTRET QABatchWV_DPVState
(INTREF riDPVState);

Parameters

Argument Explanation

riDPVState Returned state of the DPV system.

Return values

Either: 0 if successful (DPV state has been determined)

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Comments

The argument riDPVState will be populated with one of the following values:

State Macro Explanation

-1 DPVstate_Unknown Returned by the function in the event of an error.

0 DPVstate_NotInUse The DPV system is not in use.

90

State Macro Explanation

1 DPVstate_Enabled The DPV system is enabled.

2 DPVstate_Disabled The DPV system has been disabled following a
seed address search.

91

QABatchWV_EndSearch

Deallocates resources and the search handle used by a call to QABatchWV_
Clean.

Pre-call conditions

An instance of the API has been initialised and opened with QABatchWV_Open.
QABatchWV_Clean has been called, and all results have been retrieved.

Prototype

INTRET QABatchWV_EndSearch
(INTVAL viSearchHandle);

Parameters

Argument Explanation

viSearchHandle Handle for this search. If a NULL search handle was passed to
QABatchWV_Clean this should be set to 0.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not
valid.QABatchWV_Cleanmust be successfully called prior
to this function, and the handle returned from riSearchHandle
should be used.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

92

Comments

This function should be called after results have been retrieved from
QABatchWV_Clean, in order to free the search handle for use in further
searches.

Related Functions:

QABatchWV_Clean

93

QABatchWV_FormattedLineCount

Returns the number of formatted lines that a search has resulted in.

Pre-call conditions

The API must be initialised, and started with QABatchWV_Open, and a call to
QABatchWV_Clean should have been completed successfully.

Prototype

INTRET QABatchWV_FormattedLineCount
(INTVAL viSearchHandle,
INTREF riCount);

Parameters

Argument Explanation

viSearchHandle Handle for this search. If a NULL search handle was
passed to QABatchWV_Clean this should be set to 0.

riCount Count of formatted lines.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not
valid.QABatchWV_Cleanmust be successfully called prior
to this function, and the handle returned from
riSearchHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to determine
the cause of the problem.

94

Comments

This function tells you how many times QABatchWV_GetFormattedLine needs to
be called in order to retrieve a full address.

For the standard address and enhanced cleaning modes, the value of this
function is constant for a dataset within a session as its value is set in the
configuration file.

For the Postal code update mode, the value is determined by the number of clean
lines passed into QABatchWV_Clean.

Related Functions:

QABatchWV_GetFormattedLine

QABatchWV_LayoutLineElements

95

QABatchWV_GetAuditCode

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Extracts a text-based audit code from the counters file on the disk where QAS
Batch API With Suppression is installed.

Pre-call Conditions

The API is initialised. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_GetAuditCode
(STRREF rsAuditCode,
INTVAL viAuditCodeLength);

Parameters

Argument Explanation

rsAuditCode Buffer to receive audit code string.

viAuditCodeLength Maximum length of audit code.

Return Values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

96

Related Functions:

QABatchWV_ApplyUpdateCode

97

QABatchWV_GetCountry

Returns a description of a dataset available to this instance of the API.

Pre-call conditions

The API must be initialised, with no searches in progress. A specific instance must
have been started with QABatchWV_Open.

Prototype

INTRET QABatchWV_GetCountry
(INTVAL viHandle,
INTVAL viIndex,
STRREF rsIsoCode,
STRREF rsCountry,
INTVAL viLength);

Parameters

Argument Explanation

viHandle Handle for this instance of the API. If the handle that is passed
to viHandle is 0, all datasets are used. If the handle is passed,
all datasets within the section are used.

viIndex Number of dataset.

rsIsoCode Buffer to receive the dataset identifier.

rsCountry Buffer to receive name of dataset.

viLength Maximum length of rsCountry.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

98

Bad handle: The handle passed to the parameter viHandle is not
valid.QABatchWV_Openmust be successfully called
prior to this function, and the handle returned in
riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Country out of range: The index passed to the viIndex parameter is too large.
The value should be between 0 and the count returned
from QABatchWV_CountryCount -1.

Comments

This function, in conjunction with QABatchWV_CountryCount, is useful if you
want to confirm the number, names and dataset identifiers of available datasets
for a particular instance of the API. You might want to call these two functions prior
to the first call ofQABatchWV_Clean so that you know which datasets are
available to search on. You can also pass the dataset identifier into
QABatchWV_DataSetInfo to get further information about the dataset.

You should call this function as many times as required to retrieve dataset details.
For example, ifQABatchWV_CountryCount returned a count of 4, you would call
QABatchWV_GetCountry a maximum of four times to retrieve details of each
dataset, setting viIndex to 0, 1, 2 and 3.

The parameter viIndex contains the number of the dataset whose details you want
to retrieve. For example, inputting 0 retrieves the name of the first installed
dataset, 1 returns the name of the second dataset, and so on.

The output parameters rsIsoCode and rsCountry contain the dataset identifier and
country name respectively of a dataset. A dataset identifier is a three-character
descriptor for a dataset, which appears on the data sheet supplied with each
dataset. For example, the Australia dataset identifier is AUS.

The rsIsoCode buffer must be at least 4 characters long, in order to accommodate
a three-character dataset identifier and a trailing NULL.

Related Functions:

QABatchWV_CountryCount

QABatchWV_DataSetInfo

99

QABatchWV_GetDataSet

Retrieves the DataPlus sets, additional datasets and keyfinder sets for a dataset.

Pre-call conditions

The API must be initialised with QABatchWV_Open, and a call to QABatchWV_
DataSetCount should have been completed successfully.

Prototype

INTRET QABatchWV_GetDataSet
(INTVAL viHandle,
INTVAL viIndex,
STRVAL vsIsoCode,
STRREF rsName,
INTVAL viNameLength,
STRREF rsDesc,
INTVAL viDescLength,
LONGREF rlType);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

viIndex Set index (between 0 and count).

vsIsoCode The dataset identifier of the dataset for which information will be
returned.

rsName Name of dataset.

viNameLength Maximum length of buffer for rsName.

rsDesc Description of the dataset.

viDescLength Maximum length of buffer for rsDesc.

rlType Type of data.

Return values

Either: 0 if call successful

Or: negative error code

100

Possible values of rlType are:

Value Description

datasettype_BASE 1 Dataset type is base dataset.

datasettype_DATAPLUS 2 Dataset type is DataPlus set.

datasettype_ADDITIONAL 4 Dataset type is additional dataset.

datasettype_KEYFINDER 32 Dataset type is keyfinder (i.e. the dataset
contains a logical reverse search key).

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Function called out of
sequence:

The function has been called out of sequence.
QABatchWV_DataSetCount must be successfully
called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

File error: The file specified in vsIniFile could not be opened.
Dataset out of range: The index passed to the viIndex parameter is too large.

It should be between 0 and the count from
QABatchWV_DataSetCount -1.

Related Functions:

QABatchWV_DataSetCount

QABatchWV_DataSetInfo

QABatchWV_GetCountry

QABatchWV_CountryCount

101

QABatchWV_GetDPFieldCount

Retrieves the number of DataPlus fields that are associated with a given DataPlus
or Additional dataset. A list of suitable datasets can be obtained from
QABatchWV_DataSetCount and QABatchWV_GetDataSet.

Datasets that can contain DataPlus fields are those of the types datasettype_
DATAPLUS or datasettype_ADDITIONAL. See QABatchWV_GetDataSet for
more information about dataset types.

Note that not all datasets listed by QABatchWV_DataSetCount and
QABatchWV_GetDataSet will be accessible due to layout and licensing
restrictions.

Pre-call conditions

The API must be initialized with QABatchWV_Open.

Prototype

INTRET QABatchWV_GetDPFiledCount
(INTVAL viHandle,
STRVAL vsDPSet,
LONGREF rlCount);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsDPSet The identifier of the dataset for which information will be returned.

rlCount Number of DataPlus fields associated with a dataset.

Return values

Either: 0 if call successful

Or: negative error code

102

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

No DataPlus: The requested DataPlus is not available for the current layout.

Related Functions:

QABatchWV_DataSetCount

QABatchWV_GetDataSet

QABatchWV_GetDPFieldName

QABatchWV_GetDPFieldInfo

103

QABatchWV_GetDPFieldInfo

Retrieves information for a specific DataPlus field for a dataset. DataPlus fields
are indexed from zero to QABatchWV_GetDPFieldCount -1.

Pre-call conditions

The API must be initialized with QABatchWV_Open and a call to QABatchWV_
GetDPFieldCount should have been completed successfully.

Prototype

INTRET QABatchWV_GetDPFieldInfo
(INTVAL viHandle,
STRVAL vsDPSet,
INTVAL viIndex,
INTVAL viInfoType,
STRREF rsStringInfo,
INTVAL viStringInfoLength,
LONGREF rlLongInfo);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsDPSet The dataset identifier of the dataset for which information
will be returned.

viIndex Field index (between 0 and count).

viInfoType Field info type.

rsStringInfo Receives the string information for string info types.

viStringInfoLength Maximum length of buffer for rsStringInfo.

rlLongInfo Receives the long information for long info types.

Return values

Either: 0 if call successful

Or: negative error code

104

Possible values of vsInfoType are:

Value Type Description

dpfieldinfotype_CODE String Field Code, also returned by
QABatchWV_GetDPFieldName.

dpfieldinfotype_NAME String Field Name, also returned by
QABatchWV_GetDPFieldName.

dpfieldinfotype_
FORMATSTRING

String Format String, mainly for date fields.

dpfieldinfotype_ATTR Long Attributes, bitfield, see the dpfieldatr_
values below.

dpfieldinfotype_MAXLEN Long Maximum possible length for the value
when formatting with this field.

Possible attribute flags returned in rILongInfo for dpfieldinfotype_
ATTR are:

Value Description

dpfieldattr_DATE Field is a date.

dpfieldattr_BARCODE Field is a barcode.

dpfieldattr_SUPPRESSION Field is part of suppression data.

dpfieldattr_DATERANGE Field is a date range.

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Function called
out of sequence:

The function has been called out of sequence.QABatchWV_
GetDPFieldCount must be successfully called prior to this
function.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

No DataPlus: The requested DataPlus is not available for the current layout.
Field out of
range:

The index passed to the viIndex parameter is too large. It
should be between 0 and the count from QABatchWV_
GetDPFieldCount -1.

105

Invalid info type: The info type passed to the viInfoType parameter is not valid.
See the table above for the list of valid info types.

Related Functions:

QABatchWV_GetDPFieldCount

QABatchWV_GetDPFieldName

106

QABatchWV_GetDPFieldName

Retrieves the code and name for a specific DataPlus field for a dataset. DataPlus
fields are indexed from zero to QABatchWV_GetDPFieldCount -1.

The DataPlus field code is suitable for addresses format specification. The
DataPlus field name is a human-readable description of the field. Use
QABatchWV_GetDPFieldInfo for more information about the DataPlus field.

Pre-call conditions

The API must be initialized with QABatchWV_Open and a call to QABatchWV_
GetDPFieldCount should have been completed successfully.

Prototype

INTRET QABatchWV_GetDPFieldName
(INTVAL viHandle,
STRVAL vsDPSet,
INTVAL viIndex,
STRREF rsCode,
INTVAL viCodeLength,
STRREF rsName,
INTVAL viNameLength);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsDPSet The dataset identifier of the dataset for which information
will be returned.

viIndex Field index (between 0 and count).

rsCode DataPlus field code.

viCodeLength Maximum length of buffer for rsCode.

rsName DataPlus field name.

viNameLength Maximum length of buffer for rsName.

107

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Function called
out of sequence:

The function has been called out of sequence.QABatchWV_
GetDPFieldCount must be successfully called prior to this
function.

Bad parameter: One of the API parameters has been passed as an invalid
value. Use the LogErrors configuration setting to determine
the cause of the problem.

No DataPlus: The requested DataPlus is not available for the current layout.
Field out of
range:

The index passed to the viIndex parameter is too large. It
should be between 0 and the count from QABatchWV_
GetDPFieldCount -1.

Related Functions:

QABatchWV_GetDPFieldCount

QABatchWV_GetDPFieldInfo

108

QABatchWV_GetFormattedLine

This function gets one formatted address line from the latest retrieved address.

Pre-call conditions

The API must be initialised and started with QABatchWV_Open, and a call to
QABatchWV_Clean should have been completed successfully.

Prototype

INTRET QABatchWV_GetFormattedLine
(INTVAL viSearchHandle,
INTVAL viLine,
STRREF rsBuffer,
INTVAL viBuffLen);

Parameters

Argument Explanation

viSearchHandle Handle for this search. If a NULL search handle was passed to
QABatchWV_Clean this should be set to 0.

viLine Number of the line to be retrieved.

rsBuffer Buffer to return the formatted address line.

viBuffLen Maximum length of the address line buffer.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

109

Bad handle: The handle passed to the parameter viSearchHandle is not
valid.QABatchWV_Cleanmust be successfully called prior
to this function, and the handle returned from riSearchHandle
should be used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to determine
the cause of the problem.

Out of range: The parameter passed to viLine is too large. This should be a
value between 0 and the count from QABatchWV_
FormattedLineCount -1.

Comments

This function should be called as many times as necessary to retrieve a full
address. If this function is called during a Postal code only clean, it will return the
same number of lines as contained in the input address.

Related Functions:

QABatchWV_FormattedLineCount

110

QABatchWV_GetLayout

Retrieves the name of one layout in the specified configuration file. For more
information about configuration files see page 147.

Pre-call conditions

The API is initialised. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_GetLayout
(STRVAL vsIniFile,
INTVAL viIndex,
STRREF rsName,
INTVAL viLength);

Parameters

Argument Explanation

vsIniFile Name of a configuration file, if you have created a separate
file for layouts. If vsIniFile is not specified, the default
configuration file, qaworld.ini, will be used.

viIndex Number of layout.

rsName Name of layout.

viLength Maximum length of buffer for rsName.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

111

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

File error: The file specified in vsIniFile could not be opened.
Layout out of range: The index passed to the viIndex parameter is too large.

It should be between 0 and the count from
QABatchWV_LayoutCount -1.

Comments

This function, in conjunction with QABatchWV_LayoutCount, is useful if you want
to confirm the number and names of available configuration layouts prior to
calling QABatchWV_Open.

You should call this function as many times as required to retrieve layout names
from a configuration file. For example, ifQABatchWV_LayoutCount returned a
count of 6, you would call QABatchWV_GetLayout a maximum of six times to
retrieve each layout name.

The parameter viIndex contains the number of the layout whose name you want
to retrieve. For example, inputting 0 retrieves the name of the first layout in the
configuration file, 1 returns the name of the second layout, and so on.

Related Functions:

QABatchWV_LayoutCount

QABatchWV_ChangeLayout

112

QABatchWV_GetLicenceInfo

Returns a specified line of licensing information.

Pre-call conditions

The API must be initialised. A specific instance must have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_GetLicenceInfo
(INTVAL viHandle,
STRVAL vsIsoCode,
INTVAL viLine,
STRREF rsLicenceInfo,
INTVAL viLicenceInfoLength);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsIsoCode The dataset identifier of the dataset for which information
will be returned.

viLine The line number of the licensing information to get.

rsLicenceInfo The licensing information string returned.

viLicenceInfoLength The size of the buffer passed into rsLicenceInfo.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

113

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be used.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

Invalid country: The string passed to the vsIsoCode parameter is not valid. The
dataset identifier has to be specified in the InstalledData
configuration setting.

Out of range: The parameter passed to viLine is too large. This should be a
value between 0 and the count from QABatchWV_
LicenceInfoCount -1.

Comments

The licensing information string returned will contain the licence information for
one data file in the dataset.

114

QABatchWV_GetMatchInfo

This function provides access to detailed match information. Most values are
returned as integers to ease processing. Each parameter provides a discrete
component of the full match code.

Pre-call conditions

The API must be initialised and started with QABatchWV_Open, and a call to
QABatchWV_Clean should have been completed successfully.

Prototype

INTRET QABatchWV_GetMatchInfo
(INTVAL viSearchHandle,
STRREF rsIsoCode,
STRREF rsMatchType,
INTREF riConfidence,
INTREF riPostcodeAction,
INTREF riAddressAction,
LONGREF rlGenericInfo,
LONGREF rlCountryInfo,
LONGREF rlCountryInfo2)

Parameters

Argument Explanation

viSearchHandle Handle for this search thread.

rsIsoCode Dataset identifier.

rsMatchType Match type (zero-terminated single letter).

riConfidence Confidence of match (0-9).

riPostcodeAction Action performed on postal code (0-3).

riAddressAction Action performed on address (0-3).

rlGenericInfo Generic information (32 bit values).

rlCountryInfo Dataset-specific information (32 bit values).

rlCountryInfo2 Additional Dataset-specific information (32 bit values).

115

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not
valid.QABatchWV_Cleanmust be successfully called prior to
this function, and the handle returned from riSearchHandle
should be used.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

Related Functions:

QABatchWV_Clean

QABatchWV_Open

116

QABatchWV_GetUnusedInput

This function gets one unused line from the latest input address.

Pre-call conditions

The API must be initialised with QABatchWV_Open, and a call to QABatchWV_
Clean should have been completed successfully.

Prototype

INTRET QABatchWV_GetUnusedInput
(INTVAL viSearchHandle,
INTVAL viLine,
STRREF rsBuffer,
INTVAL viLength,
LONGREF rlLineCompleteness,
LONGREF rlLineType,
LONGREF rlLinePosition,
INTREF riCareOf,
INTREF riPremSuffix);

Parameters

Argument Explanation

viSearchHandle Handle for this search thread. If a NULL search handle
was passed to QABatchWV_Clean this should be set to 0.

viLine Number of the line to be retrieved.

rsBuffer Buffer to return the unused line.

viLength Maximum length of the unused line buffer.

rlLineCompleteness Describes how much of the line is unused.

rlLineType Describes what type of information is on the line.

rlLinePosition Describes the position of the line, relative to the street.

riCareOf Boolean denoting whether the line is a 'care of' premises
prefix.

riPremSuffix Boolean denoting whether the line is an alphabetic
premises suffix.

117

Return values

Either: 0 if call successful

Or: negative error code

Possible values of rlLineCompleteness are:

Value Description

unusedcompleteness_COMPLETE Complete line (i.e. as supplied)

unusedcompleteness_PARTIAL Incomplete line (i.e. part matched)

Possible values of rlLineType are:

Value Description

unusedtype_ADDRESS Unused address data

unusedtype_NAME Unused name data

Possible values of rlLinePosition are:

Value Description

unusedstreet_PRESTREET Appeared before matched street

unusedstreet_POSTSTREET Appeared after matched street

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not
valid.QABatchWV_Cleanmust be successfully called prior to
this function, and the handle returned from riSearchHandle
should be used.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

Out of range: The parameter passed to viLine is too large. This should be a
value between 0 and the count from QABatchWV_
UnusedLineCount -1.

118

Comments

This function is optional; call it in conjunction with QABatchWV_
UnusedLineCount if you want to see which parts of the input address, if any, were
not included in the output address.

Unused lines will include any leading non-matching elements from the input
address. For example, say this is the input address:

John Smith, Suite 1, Level 9, 60 Miller St, North Sydney, 2060

The dataset (Australia, in this case) does not contain names, so although the rest
of the address is correct, QAS Batch API cannot match the leading element (i.e.
'John Smith') to anything and returns it as unused.

If the CleaningAction keyword is set to 'Enhanced', then 'John Smith' would be
prefixed to the output address. If this is the case, it would not be returned as an
unused line.

The function should be called as many times as necessary to retrieve any unused
lines from the input address. If the function is called out of place (for example,
before QABatchWV_Clean), it will fail with an error.

Related Functions:

QABatchWV_UnusedLineCount

119

QABatchWV_LayoutCount

Retrieves the number of available layouts in the specified configuration file. For
more information about configuration files see page 147.

Pre-call conditions

The API is initialised. No specific instances of the API need to be running.

Prototype

INTRET QABatchWV_LayoutCount
(STRVAL vsIniFile,
INTREF riCount);

Parameters

Argument Explanation

vsIniFile Name of a configuration file, if you have created a separate
file for layouts. If vsIniFile is not specified, the default
configuration file, qaworld.ini, will be used.

riCount Number of layouts in the configuration file.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

File error: The file specified in vsIniFile could not be opened.

120

Comments

This function tells you how many configuration layouts are available in the INI file
that you specify. See Configuring the QAS Batch API for a detailed description of
configuration files and layouts.

You can call this function before QABatchWV_Open, as it does not relate to a
specific instance of the API.

Once you have the number of layouts, you can call QABatchWV_GetLayout as
many times as is necessary to retrieve the name of each layout.

Related Functions:

QABatchWV_GetLayout

QABatchWV_ChangeLayout

121

QABatchWV_LayoutLineCount

This function returns the number of address lines available in the configuration
layout that you specified in your call to QABatchWV_Open.

Pre-call conditions

The API must be initialised, and a specific instance should have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_LayoutLineCount
(INTVAL viHandle,
STRVAL vsCountry,
INTREF riCount);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsCountry The dataset identifier for the layout to be returned.

riCount Number of lines in layout.

Return values

Either: 0 if call successful

Or: negative error code

Comments

This function tells you how many times the function QABatchWV_
LayoutLineElements needs to be called in order to retrieve a full address layout.

The value of this function is constant for a dataset within a session, as its value is
set in the configuration file.

122

Related Functions:

QABatchWV_GetFormattedLine

QABatchWV_LayoutLineElements

123

QABatchWV_LayoutLineElements

Returns a description of the elements fixed to a particular line of the address
layout.

Pre-call conditions

The API must be initialised, and a specific instance should have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_LayoutLineElements
(INTVAL viHandle,
STRVAL vsCountry,
INTVAL viLine,
STRREF rsBuffer,
INTVAL viLength,
LONGREF rlFlags);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsCountry The dataset identifier for the layout to be returned.

viLine Address line to retrieve (from 0 to QABatchWV_LayoutLineCount
-1).

rsBuffer Buffer to receive line elements.

viLength Maximum length of rsBuffer.

rlFlags Line description.

Return values

Either: 0 if call successful

Or: negative error code

124

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be
used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Invalid country: The string passed to the vsCountry parameter is not valid.
The dataset identifier has to be specified in the
InstalledData configuration setting.

Out of range: The parameter passed to viLine is too large. This should be
a value between 0 and the count from QABatchWV_
LayoutLineCount -1.

Comments

This function tells you whether a specific address / DataPlus element, if any, has
been fixed to a line of an address layout. When an element is fixed to a line, it
cannot appear anywhere else in the address. See the AddressLineN setting for
details of how to fix an element to a line.

If you want to retrieve descriptions of each address line from the current layout,
you should call this function as many times as required. For example, if
QABatchWV_LayoutLineCount returned a count of 6 address lines, you could
call this function a maximum of six times to retrieve a description of each line.

The parameter viLine contains the number of the address line whose description
you want to retrieve. For example, inputting 0 retrieves the description of the first
line in the layout, 1 returns the second line, and so on.

The parameter rsBuffer contains the results of the function call. For example, if the
town was fixed to line 4 of an address layout, you would set the value of viLine as
3, and rsBuffer would return 'Town'. If there are no elements (or more than one
element) fixed to the line that you have specified, the buffer will be empty.

125

The rlFlags parameter contains the type of line that is being retrieved. The 'flags'
that can be returned are as follows:

Flag name Value

element_ADDRESS 0x00000000

element_NAME 0x00000001

element_DATAPLUS 0x00000002

element_ANCILLARY 0x00000003

format_TRUNCATED 0x00000010

format_OVERFLOW 0x00000020

format_DATAPLUSSYNTAX 0x00000040

format_DATAPLUSEXPIRED 0x00000080

format_DATAPLUSBLANK 0x00000100

A return of 0 (element_ADDRESS) essentially indicates the absence of any flags,
which means that the standard line type has been received, i.e. a line containing
address elements.

For example, you might have a seven-line address layout, where the first line
contains name information, the second to sixth lines contain the address, and the
final line is reserved for DataPlus data. In this case, the first line of the returned
address would return element_NAME, the last line would return element_
DATAPLUS, and the lines in between would return element_ADDRESS.

The values assigned to each flag are symbolic constants defined by the API, and
appear in the prototyped header files for each language.

Related Functions:

QABatchWV_LayoutLineCount

126

QABatchWV_LicenceInfoCount

Returns the number of lines of licensing information available for a specified
dataset.

Pre-call conditions

The API must be initialised. A specific instance must have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_LicenceInfoCount
(INTVAL viHandle,
STRVAL vsIsoCode,
INTREF riLicenceInfoCount);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

vsIsoCode The dataset identifier of the dataset for which information
will be returned.

vsLicenceInfoCount The number of licence information lines available.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be used.

127

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

Invalid country: The string passed to the vsIsoCode parameter is not valid.
The dataset identifier has to be specified in the
InstalledData configuration setting.

Comments

One line of licensing information is available for each data file in the specified
dataset. A single data file might be core data, an additional dataset (e.g. Names
data), or a DataPlus set.

For example, if you have the GBR Mosaic DataPlus set configured in the
qawserve.ini file, but there is no licence information present in the qalicn.ini file, a
count of 1 is returned. In addition,QABatchWV_GetLicenceInfo returns the string
"Data Licence not found".

128

QABatchWV_Open

Opens an instance of the API, specifying the name of the configuration file to be
used, and the layout to use within that file.

Pre-call conditions

The API has been initialised with QABatchWV_Startup.

Prototype

INTRET QABatchWV_Open
(STRVAL vsIniFile,
STRVAL vsLayout,
LONGVAL vlFlags,
INTREF riHandle);

Parameters

Argument Explanation

vsIniFile Name of configuration file to open. If the full path is not
specified, QAS Batch API will only check for the configuration
file within the program directory. The default configuration file
is qaworld.ini, but a separate configuration file can be used to
handle layout information. For more information about
configuration files, see page 147.

vsLayout Layout section to open.

vlFlags Included to provide for extra functionality in future versions.

riHandle Handle returned by the API (if there is more than one user
accessing the search engine).

Return values

Either: 0 if call successful

Or: negative error code

129

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

No handles: QABatchWV_Open has been called too many times
without a call to QABatchWV_Close. There is a limit of
32 open handles that can be created. Ensure that
QABatchWV_Close is called when an open instance is
not required.

No installed countries: No countries were successfully started. Check that all
datasets have been installed correctly, and ensure that
there are countries defined in the InstalledData
setting.

INI file error: The file specified in vsIniFile could not be opened. For
more information about configuration files see page 147.

No country file: The API could not find the file country.ini. Ensure that the
product has been installed correctly, and the file
country.ini is present in the program directory.

File error: There was an error attempting to open a file. This is most
likely to occur when opening a data file. Ensure the
datasets have been correctly installed and that the
corresponding settings are defined in InstalledData.

Invalid layout: An invalid layout is specified in the configuration file
passed to vsIniFile. Ensure that a layout is defined within
the configuration setting that is passed to the vsLayout
parameter.
Layout names in the configuration file are enclosed by
square brackets. However, when specifying a layout
name as a parameter in a function call, the square
brackets should not be included.
Check that the layout has the correct syntax. See
AddressLineCount and AddressLineN.

Comments

When you open an instance of the QAS Batch API, you need to specify the
configuration file you are using, and the layout within that configuration file which
contains your output address format.

130

If NULL is passed into either of the above input parameters, the API uses defaults.
The default configuration file is qaworld.ini, and the default layout within that file is
[QADefault] (without brackets).

You might also get an error if you have chosen (in the configuration file) to create
a log file and the QAS Batch API cannot find the specified drive or directory to
create it. An error will also be returned if one of the datasets has expired, or has
been moved from its default location.

When the API instance has initialised, it returns a handle in the form of an integer.
This handle is used to distinguish between multiple users of the QAS Batch API
search engine, and should be passed into all subsequent functions. It should be
set to 0 if you do not wish to multithread the QAS Batch API.

There can be 32 instances of the API running at any one time, in other words
QABatchWV_Open can be called 32 times. If all instances are already in use
when you call this function, the error qaerr_NOHANDLES is returned.

Related Functions:

QABatchWV_Close

131

QABatchWV_RunMode

This information is only relevant when using GBR or AUS data with

additional Suppression data.

This function switches an instance of QAS Batch into or out of 'Estimate Mode'.
Whilst in Estimate Mode, counter statistics can be returned, allowing a user to
estimate the cost of a suppression without committing to purchasing the clicks.
Upon calling this function, all open counter instances will be reset.

Pre-call Conditions

The API must be initialised and a specific instance should have been started with
QABatchWV_Open.

Prototype

INTRET QABatchWV_RunMode
(INTVAL viHandle,
INTVAL viEstimateMode);

Parameters

Argument Explanation

viHandle Handle for this instance of the API.

viEstimateMode To activate Estimate Mode, pass a non-zero value into this
parameter. To disable Estimate Mode, pass a zero into this
parameter.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_
Startupmust be successfully called prior to this function.

132

Bad handle: The handle passed to the parameter viHandle is not valid.
QABatchWV_Openmust be successfully called prior to this
function, and the handle returned in riHandle should be
used.

Bad parameter: One of the API parameters has been passed an invalid
value. Use the LogErrors configuration setting to
determine the cause of the problem.

Comments

Whilst in Estimate Mode, all items will return the matchcode
A0000000000000000000 and the formatted line count will be zero. The
QAS Batch statistics will however be populated with the aggregate match detail
as if the run had actually taken place.

When in Estimate Mode, it is not possible to extract the match and suppression
details for an address without switching out of Estimate Mode and running the
address again.

After a run is complete, any counter(s) should be read and a report produced
before closing the instance or changing the mode, as the information will be
cleared.

For more information on using Estimate Mode, see "Estimate Mode" on page 198.

Related Functions:

QABatchWV_CounterOpen

QABatchWV_CounterReport

QABatchWV_CounterClose

133

QABatchWV_Shutdown

Closes down all instances of the API, and must be called as the final function.

Pre-call conditions

The API is initialised and no searches are in progress.

Prototype

INTRET QABatchWV_Shutdown
(VOIDARG);

Return values

Either: 0 if call successful

Or: negative error code

Comments

This function will close down the API completely, and should be called even if
QABatchWV_Close has shut down all instances of the API. An error will be
returned if one or more instances of the API is in use (for example, a search is in
progress).

Related Functions:

QABatchWV_Startup

QABatchWV_Close

134

QABatchWV_Startup

Initialises the API. This function must be called before any other functions can be
used.

Pre-call conditions

None.

Prototype

INTRET QABatchWV_Startup
(LONGVAL vlFlags);

Parameters

Argument Explanation

vlFlags Allows adjusting the way Batch API operates globally, affecting all
API instances.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Locale file: The API could not find the file qalcl.dat. Ensure the product has
been installed correctly and the file qalcl.dat is in the program
directory.

Comments

This function initialises the QAS Batch API. Once initialised, you can either call
informational functions such as QABatchWV_LayoutCount, or you can open an
instance of the API with QABatchWV_Open.

135

Attribute Explanation

qabwvflags_NONE This value uses the default settings for Batch API.

qabwvflags_
SESSION

This value tells QAS Batch API to work in Session Mode.
This affects the way Batch API will treat custom.ini files
supplied to QABatchWV_Open.

If this function is called out of turn or encounters an error while initialising, the API
will shut down and an appropriate error will be flagged.

Related Functions:

QABatchWV_Shutdown

QABatchWV_Open

136

QABatchWV_UnusedLineCount

This function returns the number of lines that have not been used from the input
address.

Pre-call conditions

The API must be initialised, a specific instance started with QABatchWV_Open,
and QABatchWV_Clean called.

Prototype

INTRET QABatchWV_UnusedLineCount
(INTVAL viSearchHandle,
INTREF riCount);

Parameters

Argument Explanation

viSearchHandle Handle for this search thread.

riCount Number of unused lines.

Return values

Either: 0 if call successful

Or: negative error code

Possible Error Scenarios

Not running: The API has not been started properly.QABatchWV_Startup
must be successfully called prior to this function.

Bad handle: The handle passed to the parameter viSearchHandle is not
valid.QABatchWV_Cleanmust be successfully called prior to
this function, and the handle returned from riSearchHandle
should be used.

Bad parameter: One of the API parameters has been passed an invalid value.
Use the LogErrors configuration setting to determine the
cause of the problem.

137

Comments

The value returned by this function tells you how many times you need to call
QABatchWV_GetUnusedInput. Its value will depend on the input address, and
therefore varies within a session.

A call to this function will produce a zero value if all lines from the input address
also appear in the output.

Related Functions:

QABatchWV_GetUnusedInput

138

QAErrorHistory

This function provides detailed error information for single threaded integrations.
QAErrorHistory should not be used as a diagnostic tool in a multithreaded
integration.

Pre-call conditions

The API has been shut down with QABatchWV_Shutdown.

Prototype

INTRET QAErrorHistory
(INTVAL viAll,
INTVAL viLineNo,
STRREF rsBuffer,
INTVAL viBuffLen);

Parameters

Argument Explanation

viAll Specifies the level of errors returned. Set viAll to 0 to access the
errors directly associated with the most recent error code, or 1 to
access QAS Batch API's entire error history (which is likely to
include messages corresponding to unrelated non-fatal internal
errors). It is recommended that viAll is set to 0.

viLineNo Line number being accessed (or negative if resetting).

rsBuffer Buffer to receive error text message.

viBuffLen Maximum length of the buffer (including room for NULL
terminator).

Return values

Either: 0 if call successful

Or: negative error code

139

Comments

This function is used for accessing more detailed error information than that
returned by QAErrorMessage. For example,QAErrorMessage may return 'file
not found' whereas QAErrorHistory can highlight the specific file(s) that was not
found.

Resetting frees up memory allocated by the function. For more information, see
QASystemInfo on page 143.

140

QAErrorLevel

Returns the severity of an error.

Prototype

INTRET QAErrorLevel
(INTVAL viStatus);

Parameters

Argument Explanation

viStatus Error code.

Return values

Either: 0 for a fatal or serious error

Or: 1 for a warning

Comments

This function indicates the severity of an error returned by the API. A fatal or
serious error should be flagged to the user and the API shut down. A warning
should be handled in a manner appropriate to the condition and can, if desired,
be ignored.

141

QAErrorMessage

This function converts an error code to a text explanation.

Pre-call conditions

The API must be initialised and a specific instance should have been started with
QABatchWV_Open.

Prototype

VOIDRET QAErrorMessage
(INTVAL viStatus,
STRREF rsBuffer,
INTVAL viBuffLen);

Parameters

Argument Explanation

viStatus Error code.

rsBuffer Buffer to receive error text message.

viBuffLen Maximum length of the buffer (including room for NULL
terminator).

Comments

This function is useful for converting an error code to a short text message that
can be displayed to the user for informational purposes.

It is advised thatQAErrorMessage is called after any function which returns an
error code, as the text message might help you identify the cause of the error.

142

QASystemInfo

Returns detailed information about the system usage of the QAS Batch API
library.

Prototype

INTRET QASystemInfo
(INTVAL viLineNo,
STRREF rsBuffer,
INTVAL viBuffLen);

Parameters

Argument Explanation

viLineNo Line number being accessed (or negative if resetting).

rsBuffer Buffer to receive text line.

viBuffLen Buffer length (including room for NULL terminator).

Return values

Either: 0 if call successful

Or: negative for an invalid line number

Comments

You can only call this function once the API has been started.

The system information text contains detailed information about the QAS Batch
API library, how it is configured, and the resources that it has grabbed from the
operating system. The text is split over several lines and so has to be read one
line at a time. A buffer size of 80 bytes will be sufficient to guarantee that no lines
are truncated.

When the first line is read, the library generates an internal copy of the system
information text. It is important that this copy is reset once all the lines have been
read otherwise the allocated memory will not be freed. Below is a C example that
prints the system information text.

143

C example that prints out QASystemInfo text:

void PrintSystemInfo(VOIDARG)
{
char sBuffer[80];
int iLineNo;
/* read each line in turn */
for (iLineNo = 0;
QASystemInfo(iLineNo, sBuffer, sizeof(sBuffer)) == 0;
iLineNo++)

{
puts(sBuffer);

}
/* reset in order to free memory */
QASystemInfo(-1, NULL, 0);

}

If you run the example above, you get a result similar to this:

Program: QABWVED
Copyright: Experian Ltd
Release: 4.00(07)
Platform: Windows 32-bit
Libraries: QAKRNXF 2.23(213)
 QATOKXD 1.00(3)
 QAUFWXF 4.00(208)
 QACOMXD 1.01(152
 QASLGXD 1.00(3)
 QASLHXD 1.00(2)
 QASLUXD 1.00(2)
 QAHSGXD 3.00(89)
 QAGENXD 1.00(4)
 QAHSVXD 3.20(84)
 QALICXD 1.00(10)
 QAHCLXD 3.00(60)
 QACDIXD 4.00(317)
 QADC2XD 2.40(47)
 QADS2XD 2.00(14)
 QAWD2XD 2.40(66)
 QAUSGXD 4.00(109)
 QALL2XD 2.40(81)
 QAUTDXD 4.00(129)
 QASLCXD 1.00(2)
 QATIXXD 4.00(110)
 QAZLSXD 1.01(41)

Config: qaworld.ini

144

Section: ALL

Licensed to: <unknown>
Serial No: <none>
Days: No limit
Users: No limit
Dongle: <none>

Prog Dir: C:\Experian\QAS Batch API
Home Dir: C:\Experian\QAS Batch API
Data Dir: C:\Experian\QAS Batch API
Temp Dir: C:\DOCUME~1\chrisr\LOCALS~1\Temp
Log File: <disabled>

Memory: 69451515 (allocs=2592)
Data: 69323428 (free=760)
Blocks: 4816 (free=68)

145

QAS Batch API
Configuration

Before you can perform any searches with the QAS Batch API, you need to
specify how and where QAS Batch API will search for input addresses and the
format in which output addresses are returned.

QAS Batch API bases these processing decisions on a configuration (INI) file.
This file contains many default settings which govern the basic processing that
QAS Batch API does, and allows you to define options such as the dataset(s) you
search in, cleaning options, and how the output address should look.

The configuration file which contains these settings by default is called
qaworld.ini. Within this file, configuration information is stored within layouts. You
can create multiple layouts within this configuration file, to encapsulate several
different processing options and address formats.

However, if you would prefer to store layout information separately from other
global settings, you should do so within a new INI file (custom.ini, for example)
and specify its name in your call to QABatchWV_Open.

The default handling of custom INI files is to only load the output formatting
settings as described in "Setting The Output Address Format" on page 172. It is
possible to start Batch API in Session Mode by using the qabwvflags_SESSION
flag in QABatchWV_Startup. In Session Mode all layout settings will be loaded
from the custom INI file.

In addition to layout settings, the file qawserve.ini contains settings pertaining to
the installed datasets. This file is automatically used when the API is initialised.
You should not rename it, move it or attempt to call it with any of the API functions.

147

Format Of A Configuration File
A configuration file can contain several layouts, each comprising a set of
instructions. To view a configuration file, such as the main qaworld.ini file, use a
text editor such as Notepad. Do not use a formatting editor such as Microsoft
Word because it will corrupt the configuration file with its own formatting codes if
you save it.

148

The layouts within the configuration file have their titles in square brackets:

[layout name]

For example, the supplied layout for France is called:

[FRX]

It is advised that you do not alter anything within the supplied layouts. To create
alternative settings, copy the layout into a new layout and then make changes to
it.

Within the qaworld.ini file, layout names define the beginning of each layout.
Layout names must be enclosed within square brackets and be left-justified. A
layout ends when a new layout name is declared. The final layout is terminated
by the end of file.

Each layout comprises a set of instructions in the form of keyword assignments,
like this:

keyword=value

A keyword is the name of a setting. It can consist of any combination of letters and
digits in uppercase or lowercase, and it must be followed immediately by an
equals sign (=), which introduces the value assigned to the keyword. The value
can be an integer, a string, or a special symbol, depending on the type of setting.
Note that there should be no space between the '=' and value.

You must not alter any keyword assignments in qawserve.ini or qaworld.ini
apart from those documented in this manual.

Not all entries have to be keyword assignments. You can add comments by
prefixing the comment with a semi-colon (;).

The keyword assignments can come in any order. A typical keyword assignment
looks like this:

AUSAddressLineCount=6

This example tells QAS Batch API to create an output address consisting of six
lines.

149

Configuring QAS Batch API
There are three steps to configuring the QAS Batch API process:

1. Ensure that one or more datasets have been installed to the required
location.

2. Specify which of these datasets should be used in address matching, and
how the matching process should proceed.

3. Give QAS Batch API a format in which to return matched addresses.

The first step involves checking settings in qawserve.ini. The remaining two steps
require you to specify keyword values in qaworld.ini.

150

QAWSERVE Settings

Checking Dataset Installation
Open the file qawserve.ini in a non-formatting text editor. This file can be found in
the same directory as the library files.

The standard default settings are listed under [QADefault]. This layout includes a
setting called InstalledData, which can be used to check dataset installation.
You should not need to alter it, but you should check that it meets your
requirements.

InstalledData

InstalledData={identifier},{path}

Default: Must be explicitly set
Purpose: This keyword lists the installed datasets by a three letter identifier and

location. These datasets are the ones installed by the setup program
or copied across from the supplied data CDs/DVDs. If you wish to
change or add to them, you should run the setup program again or
copy them from the supplied medium. Note that if you are also using
Additional Datasets, they do not need to be listed in this setting.
If you have more than one dataset installed, the first dataset appears
directly after the = sign, and each subsequent dataset appears on a
new line preceded by a + sign. For every line that you have specified
here, you should also add a line in the DataMappings setting.
If you need to move a dataset, you should update this setting
accordingly.

Example: If you have installed the UK, Australia and Netherlands datasets in
C:\Program Files\QAS\Data, this setting would appear as follows:

InstalledData=GBR,C:\Program Files\QAS\Data\
+AUS,C:\Program Files\QAS\Data\
+NLD,C:\Program Files\QAS\Data\

151

DataMappings

DataMappings={identifier},{dataset/group name},{dataset identifier+additional
datasets}

Default: Must be explicitly set
Purpose: This keyword allows you to map combinations of datasets and

additional datasets to use for different cleaning runs. You choose
an identifier and dataset/group name then specify the dataset
and related additional datasets you want to include for each
mapping. The identifier must be a 3-character alphanumeric
code.
If you want to set up more than one mapping, the first should
appear directly after the = sign, and each subsequent mapping
should appear on a new line preceded by a + sign. If you add or
remove datasets in the InstalledData setting, you should
update this setting accordingly.
If you specify multiple additional datasets, you can set the order
of precedence with the DatasetPrecedenceOrder setting.

Example 1: If your InstalledData setting includes the UK, Australia and
Netherlands datasets, and you also have the United Kingdom
Names and Electricity additional datasets, and you want to
search against different combinations of data simultaneously,
you might use this setting as follows:

DataMappings=GBR,United Kingdom,GBR
+GBN,UK With Names,GBR+GBRNAM
+GBE,UK With Electricity,GBR+GBRELC
+GBA,UK With Names And
Electricity,GBR+GBRNAM+GBRELC
+AUS,Australia,AUS
+NLD,Netherlands,NLD

152

Example 2: This example is only relevant when using GBR data

with additional Suppression data.

If your InstalledData setting includes the UK dataset, and you
also have the United Kingdom Suppression additional datasets,
and you want to search against different combinations of data
simultaneously, you might use this setting as follows:

DataMappings=GBR,United Kingdom,GBR
+GBS,United Kingdom With Suppression,
GBR+GBRABC+GBRABS+GBRMSS+GBRNCA+GBRUSS+GBRMOR
+GBRMPS
+GBM,United Kingdom With Suppression
Movers,GBR+GBRABC+GBRABS+GBRNCA+GBRUSS+GBRGSF
+GBD,United Kingdom With Suppression
Deceased,GBR+GBRMSS+GBRMOR+GBRUSS+GBRTBR
+GBP,United Kingdom With Suppression
Preferences,GBR+GBRMPS+GBRTPS

Example 3: This example is only relevant when using AUS data

with additional Suppression data.

If your InstalledData setting includes the AUS dataset, and
you also have the Australia With Suppression additional dataset,
and you want to search against different combinations of data
simultaneously, you might use this setting as follows:

DataMappings=AUS,Australia,AUS
+AUX,Australia With Suppression,AUS+AUSMOR

153

CorrectAApiLoc

This information is only relevant when using USA or Canada data.

CorrectAApiLoc={path}

Default: Must be explicitly set
Purpose: This setting is required if you are using the USA or CAN data. The

setting specifies the location of the certified address matching engine
supplied on the supplementary USA or CAN QAS Batch data disk
(Windows) or separately (UNIX). You must ensure that {path} is the
location of the directory containing "CorrectA.dll" (Windows) or the
"libCorrectA " shared object file (UNIX).
You do not need to use this setting if the CorrectA library is in the
same location as your core QAS Batch API libraries.

Example: If the certified address matching engine was copied to the /Data/USA
directory, you would use the following setting:

CorrectAApiLoc=/Data/USA

CorrectADataLocUSA

This information is only relevant when using USA data.

CorrectADataLocUSA={path}

Default: Must be explicitly set
Purpose: This setting is only required if you are using the USA data. The setting

specifies the location of the supplementary USA QAS Batch data files.
The setting will be set by the installation program on the USA QAS
Batch data disk. If you are a UNIX user or copy the data files
manually, you must ensure that {path} specifies the location of the
parent directory containing the data files.

Example: If the supplementary USA QAS Batch data was copied to the
/Data/USA directory, you would use the following setting:

CorrectADataLocUSA=/Data/USA

154

CorrectADataLocCAN

This information is only relevant when using Canada data.

CorrectADataLocCAN={path}

Default: Must be explicitly set
Purpose: This setting is only required for CAN data. It specifies the location of

the supplementary CAN QAS Batch data files. The setting will be set
by the installation program on the CAN QAS Batch data disk. If you
are a UNIX user or copy the data files manually, you must ensure that
{path} is the location of the parent directory containing the data files.

Example: If the supplementary CAN QAS Batch data was copied to the
/Data/CAN directory, you would use the following setting:

CorrectADataLocCAN=/Data/CAN

155

QAWORLD Settings

Defining Processing Options
These settings appear in the qaworld.ini file, which is the configuration file called
with QABatchWV_Open by default.

Settings which are found in the [QADefault] section are general settings which are
specified once and apply to all layouts. Other settings can be specified for each
layout as required, either in qaworld.ini or your preferred layout configuration file.
For more information about configuration files see page 147.

CountryBase

CountryBase={identifier 1} ... {identifier X}

Default: Must be explicitly set
Purpose: This keyword must be specified for each layout in the configuration

file.
This keyword is used to list the data mapping identifiers that QAS
Batch API should use for searching. You can include any of the
mapping identifiers which have been set up with the
DataMappings keyword in qawserve.ini.
The first identifier in the list is made the default. QAS Batch API will
search using that mapping if the country of the input address
cannot be identified, for example if it does not include a country
name. If you do not want to set a default, use the code 'NUL' in
place of the first identifier. The identifiers should appear on the
same line, separated from the next by a space.

It is not possible to use multiple core country datasets
together in the same QAS Batch API run; for example
GBR, APR and LPG, or AUS and AUG. If this setting
contains more than one core dataset from one country, an
error will be returned from the QABatchWV_Open
function. For more information, see page 129.

Example 1: If you want your QAS Batch API layout to use your AUS data
mapping by default, but also have the option to search using GBR
and DEU mappings, this keyword would be set as follows:

CountryBase=AUS GBR DEU

156

Example 2: You can configure QAS Batch API to run without a default mapping
even if only one country is configured for cleaning. To search using
your IRL mapping but prevent QAS Batch API using it by default,
you would set the keyword as follows:

CountryBase=NUL IRL

This setting means QAS Batch API will only attempt to match the
address if the country is identified. If the country is not identified, a
match type of 'D' is assigned to the record, instead of QAS Batch
API using the default data mapping.

157

CountryRevert

CountryRevert={Boolean}

Default: FALSE
Purpose: This setting controls the process of country spotting.

Country spotting is used by QAS Batch API to identify which dataset
should be searched against. Occasionally, this can result in
matching errors.
For example, if this keyword is set to FALSE (or not present)
country spotting will be active. In this case, the following input
address would lead QAS Batch API to search for an address in
Spain:

Roadside Cottage, Cluer, Isle of Harris, HS3 3EP, Esp
However, if ESP (Spain) data is not present in your CountryBase
setting, this would cause QAS Batch API to return a C match
code"Match Success" on page 30.
Setting this keyword to TRUE disables country spotting and
instructs QAS Batch API to disregard any country identifiers unless
they correspond to a dataset that you have installed. If no
corresponding datasets are present, the country identifier is
disregarded and QAS Batch API will attempt to match the address
against your default identifier only. In the example above, this
would return a successful match if GBR data existed in your
CountryBase setting.
See page 156 for more information about the CountryBase
keyword and the default identifier.

Example: If you want QAS Batch API to restrict matching to countries in the
CountryBase(see page 156), you should set this keyword to
TRUE:

CountryRevert=True

This setting is particularly useful if you know that your input file
contains addresses from one country only, or only from the
countries specified in your CountryBase keyword.

158

LogErrors

LogErrors={Boolean}

Default: FALSE
Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.
If this keyword is set to TRUE, QAS Batch API will record all errors in
the log file, which is specified with the LogFile setting. Setting this
keyword to FALSE disables logging.

Example: Use this setting to enable logging:
LogErrors=TRUE

159

LogFile

LogFile={filename}

Default: None
Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.
LogFile enables you to specify a log file to which any errors that
occur when you call API functions are written. These errors are only
written if you set LogErrors=TRUE as well as specifying the name
of the file you want to write to with LogFile.
It is recommended that you create a log file when integrating the
API.

Example: The following creates a log file called error.log in the same directory
as the program files.

LogFile=error.log

160

BatchTimeout

BatchTimeout={integer}

Default: 5000
Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the qaworld.ini configuration file.
You can set the length of time in milliseconds that QAS Batch API
spends on a search with this keyword. The timeout that you set
comes into operation with the function QABatchWV_Clean.
The default setting of 5000 sets a timeout period of 5 seconds (5,000
milliseconds).

Example: To set a timeout period of 30 seconds (30,000 milliseconds), make
this assignment:

BatchTimeout=30000

161

CleaningAction

CleaningAction={string value}

Default: Address
Purpose: This keyword must be specified for each layout in the configuration

file.
This keyword determines the action performed by QAS Batch API
when an address has been matched. There are five possible values
for this keyword:
None No address is returned.
Update
postcode

The postal code is checked to see if it has been
recoded.

Address Returns a full address with postal code.
Enhanced Returns a full address plus additional information;

that is, components of the input address which
could not be matched. See below for an example.

This option is not available if USA is the
only dataset configured.

Example: The following setting tells QAS Batch API to return non-matched
leading elements of the input address in the output address:

CleaningAction=Enhanced

Given this input address for the Australia dataset:
John Smith, Suite 1, Level 9, 60 Miller St, North Sydney, NSW,
2060

QAS Batch API returns:
John Smith,
Suite 1, Level 9
60 Miller St
North Sydney NSW 2060

If CleaningAction is set to anything except 'Enhanced', the
component 'John Smith' would be returned as an unused address
line (see the function QABatchWV_GetUnusedInput) as it is not
stored in the Australia dataset, and is therefore not part of the
matched address.

162

SearchLevel

This information is only relevant when using GBR or LPG data.

SearchLevel={string value}

Default: Full
Purpose: This keyword can be specified for each layout in the configuration

file.
This keyword controls how intensely QAS Batch API will search for
address matches. You should consider that more stringent matching
will take longer whereas less stringent matching will take less time.
There are three possible values for this keyword:
Full Performs a full search, balancing the quality of

throughput with the time taken. This is the
recommended mode for most situations.

Extended Performs an extensive search to find address matches
for particularly inexact address data. This search mode
is the most thorough and takes the most time.

Verification Performs a rapid lookup of each input address using
key identified address components (such as a
supplied postcode and premise information). This
mode maximises the throughput of data and is
particularly effective if your address data is relatively
clean.

Example: The following setting tells QAS Batch API to use the recommended
Full search mode:

SearchLevel=Full

163

CacheMemory

CacheMemory={Integer}

Default: 0
Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.
This keyword is used to specify the amount of system memory (in
MB) that QAS Batch API can use for data caching. Caching is
disabled by default, but you can use this keyword to increase the
performance of QAS Batch API by allowing it to use system memory.
If your system has less than 64MB of memory you should not use this
setting.

Example: The following setting would allow QAS Batch API to use up to
1024MB of memory for data caching:

CacheMemory=1024

164

CorrectACacheLevel

This information is only relevant when using USA or Canada data.

CorrectACacheLevel={String}

Default: None
Purpose: This setting determines the level of data caching which should be

used for USA and/or Canadian Batch cleaning. {String} can take one
of the following values:

l ALL (QAS Batch will attempt to cache all the data required)

l NONE (QAS Batch will not cache any of the data required)

l AUTO (QAS Batch will determine how much of the data to
cache).

If you use the ALL setting, you must ensure you have sufficient RAM
available (at least 3GB) otherwise you will receive an out of memory
error. You should also ensure that sufficient memory has been
specified by the CacheMemory setting to cache the address data.
Any other datasets including USA data, will be cached in the
remaining memory.

If you are using the USA dataset, more detailed system requirements and

performance-related tips can be found in the USA Data Guide.

165

NamesTolerance

This information is only relevant when using GBR or AUS data, with

additional Names or Suppression data.

NamesTolerance={String}

Default: Blank
Purpose: This keyword can be specified for each layout in the configuration

file.
This specifies how strict QAS Batch API should be when matching
names. For a detailed description of the differences between these
options, see "Appendix E: Names Matching Tolerance Levels" on
page 200.
The cleaning process will be faster if you allow fewer errors in the
supplied names information.
The following options are available:
Relaxed Allows several errors in the supplied names.
Standard Allows one or two errors in the supplied names.

This is the recommended value.
Intermediate
(GBR only)

Minor variations in the supplied names are
permitted.

Exact No errors in the supplied names are permitted.
Example: The following setting means that QAS Batch API does not allow any

errors in the input name information:
NamesTolerance=Exact

166

OemCharacterSet

OemCharacterSet = {String} [NoDiacritics]

Default: ANSI
Purpose: This keyword applies to all layouts and must be specified in the

[QADefault] section of the configuration file.
The QAS Batch API includes support for character sets that contain
non-standard characters, such as diacritics (e.g. accents and
umlauts). The API also provides the ability to remove diacritic
characters on address output.
String indicates the generic character family. If 'NoDiacritics' is
specified, all diacritic characters are removed on output from API
routines.
The following character set families are supported by QAS Batch API.
They are 8-bit character sets and can support diacritics and multiple
code pages:

Family Description
ANSI The character sets as defined by the

American National Standards Institute.
ASCII As above but without diacritics.
DOS DOS code page 850.

167

DatasetPrecedenceOrder

DatasetPrecedenceOrder={additional dataset}

Default: Blank
Purpose: This keyword can be specified for each layout in the configuration file.

If you have configured more than one additional dataset in any line of
the DataMappings setting, this keyword can be used to specify the
precedence order.
QAS Batch API matches an input address against each additional
dataset individually. In cases where equally good matches are found
in multiple configured datasets but the matched addresses are
different, you can specify the precedence order of which dataset
match to return. If you do not specify the precedence order with this
setting then QAS Batch API will return a partial match including only
the elements common to all datasets.

Example: If you have a GBR data mapping which includes Electricity, Names
and Business data, you might use this setting as follows:

DatasetPrecedenceOrder=GBRELC
+GBRNAM
+GBRBUS

168

Certification

This information is only relevant when using USA or AUS data.

Certification={Boolean}

Default: Yes
Purpose: This setting determines whether QAS Batch should run in Certified

mode.
For the USA dataset,certified mode ensures that the results conform
to the CASS rules, including the mandatory use of Delivery Point
Validation (DPV).
In certified mode, QAS Batch API will return a +4 code only when the
address has been DPV-confirmed. If an address is not DPV
confirmed, a +4 code will not be returned, and by extension, any
DataPlus items you have configured as part of the address output
format may not be returned either.
The certified cleaning mode includes USPS SuiteLink as a standard
part of the CASS certified cleaning process. This uses USPS
SuiteLink data to enhance your organisation addresses where
possible.
For the AUS dataset, certified mode ensures that the results conform
to the AMAS rules, and Address Delivery Point Identifier (DPID) or
Default Identifier (DID) is allowed to be returned in the output.

Example: If you want QAS Batch to run in Certified mode, use the following:

Certification=Yes

169

Setting The Input Address Format
The two settings InputLineCount and InputLineN should be set up in each
layout in qaworld.ini, or your preferred layout configuration file, to describe the
contents of the input address fields as they are passed into the QAS Batch API
engine. Doing so can enhance engine processing, and increase the accuracy
and speed of address matching.

InputLineCount

InputLineCount={integer}

Default: Blank
Purpose: Use this setting to define the number of lines your input addresses

contain. The format of each individual address line is specified with
the InputLineN setting. Note that any lines not covered by your
specified input address format will not be constrained to match to
specific address element types.

Example: The following tells QAS Batch API that each input address contains
four lines:

InputLineCount=4

InputLineN

InputLine1={element list}
InputLine2={element list}
...
InputLineN={element list}

Default: Blank
Purpose: This specifies which address element is to appear on which line in

the input address. If you know that a line in your database always
contains the same type of address element, (for example, if line 4
always contains a town name), you can mark that line with an
element code. This improves the speed and quality of matching.
{element list} represents a comma-separated list of element codes,
either dataset-specific or generic. By specifying element codes, you
tell the QAS Batch API which elements to expect on that line (if the
elements exist in the matched address).

170

It is important not to supply non-address information to the QAS
Batch API (where possible), as this may compromise the address
matching process. In particular, supplying non-address numeric
values (such as DPIDs in Australia) can cause confusion when
matching against premises information. If your data includes non-
address information which cannot be identified using a generic or
dataset-specific element code then it should not be supplied to the
QAS Batch API.

Example: The following instructs QAS Batch API to expect premises details on
line 1 of the input address:

InputLine1=P00

The generic element codes are listed below, in the order in which they will appear
in a formatted address (unless you fix them in a different order on the address
line).

Order Element Code Description

1 N00 Name

2 O00 Organisation

3 P00 Premises

4 S00 Street

5 B00 PO box

6 L00 Locality

7 C00 Postal code

8 X00 Country name

If you are using QAS Batch API with Suppression data, you must

set at least one of the input lines to contain generic names information.

If you are using TPS data, you must also ensure that one of the input

lines contains a telephone number.

See the Data Guide supplied with your data for a list of dataset-specific element
codes.

171

Setting The Output Address Format
These settings appear in each layout in the qaworld.ini file, which you should call
with QABatchWV_Open. The keywords in this section can be prefixed by
[identifier]. This makes it possible to define address formats for more than one
data mapping within a single configuration layout. Identifiers are set up using the
DataMappings keyword. For example, the setting CapitaliseItem would
become AUSCapitaliseItem for the default Australian data mapping.

See "DataMappings" on page 152 for more information.

AddressLineCount

[identifier]AddressLineCount={integer}

Default: 0
Purpose: This defines the number of lines in the formatted output address.

The format of each individual line is specified with the
AddressLineN keyword.
The number of lines you specify should include any lines of
address and DataPlus information.

Example: The following setting tells QAS Batch API to produce formatted
output addresses of six lines for the 'AUS' data mapping.

AUSAddressLineCount=6

AddressLineN

[identifier]AddressLine1=W{width},{element list}
[identifier]AddressLine2=W{width},{element list}
...
[identifier]AddressLineN=W{width},{element list}

Default: Blank

172

Purpose: This specifies which address element or DataPlus information is to
appear on which line. W signifies that the number that follows it is
the maximum width of the line in characters, and {element list} is
a comma-separated list of element code. Address element codes
are listed in the Data Guide supplied with your dataset. If you do
not specify {element list} QAS Batch API will automatically spread
the standard address over the available lines. By specifying
element codes, you force QAS Batch API to place the elements on
a particular line (if the element exists in the matched address).

Unless explicitly configured, names information will always
precede address information.

By default, if an input address contains a recognised alternative
version of an official address element it will be replaced by the
official version. To configure QAS Batch API to retain the version in
the input address, append the element with a #. For example,
NZLAddressLine3=L21#.
If you want to return DataPlus information use the base name and
the element name in place of an address element (see example
2).
You can allow QAS Batch API to insert other suitable elements
before, after or between fixed elements by using the format
specifier '...'.

Example 1: The following instructs QAS Batch API to give line 1 of the 'NZL'
output address a maximum width of 30 characters:

NZLAddressLine1=W30,S21,...

The Whole Street element is fixed to the line, and any subsequent
elements can also appear on the line if they fit there.

Example 2: This example tells QAS Batch API to give line 6 of the 'AUS' output
address a maximum width of 40 characters, and fix the description
part of the MOSAIC DataPlus set to that line:

AUSAddressLine6=W40,AUSMOS.Desc

CapitaliseItem

[identifier]CapitaliseItem={element list}

Default: Blank

173

Purpose: This keyword defines which address elements should appear in
upper case in the formatted address. The value of the keyword is a
list of element codes separated by spaces.

Example: The following setting means that the building name and country
name elements will be capitalised:

AUSCapitaliseItem=P21 X11

AbbreviateItem

[identifier]AbbreviateItem={element list}

Default: Blank
Purpose: This keyword defines which address elements should be

abbreviated in the formatted address. The value of the keyword is a
list of element codes separated by spaces.

Example: The following setting means that the Australian state name will be
abbreviated:

AUSAbbreviateItem=L12

174

ConditionalFormat

[identifier]ConditionalFormat={text string}

This information is only relevant when using GBR with additional

Business data, or USA data.

Default: ExperianOrgPref

NormCity

Purpose: This setting has a different function depending on the dataset being
used.
For the GBR with additional Business dataset this setting allows the
user to specify whether to display the PAF or Experian organisation
data, or a combination of both.
There are four possible values for this keyword:
ExperianOrgPref
(default)

The Experian organisation name takes priority,
but the PAF organisation name will be used if
there is no Experian equivalent for the address.

ExperianOrgOnly Only Experian organisation names will be
returned, and PAF organisation names will be
suppressed if there is no Experian equivalent
for the address.

PostOrgPref The PAF organisation name takes priority, but
the Experian organisation name will be used if
there is no PAF equivalent for the address.

PostOrgOnly Only PAF organisation names will be returned,
and Experian organisation names will be
suppressed if there is no PAF equivalent for the
address.

For the USA dataset this setting allows the user to specify whether to
return the full city name or the abbreviated city name.
There are two possible values for this keyword:
NormCity (default) The full city name will be returned.
AbbCity The abbreviated city name will be returned. This

will have a maximum of 13 characters.

175

AbbreviateAddr

This information is only relevant when using USA data.

AbbreviateAddr={Boolean}

Default: No
Purpose: This setting allows you to limit the first line of output addresses to a

maximum of 30 characters. This setting works with QAS Compatibility
Formatting mode and in CASS Certified Mode.

Example: If you want to limit the first line of output addresses to a maximum of
30 characters, use the following:

AbbreviateAddr=Yes

176

CompatibilityFormatting

This information is only relevant when using USA data.

CompatibilityFormatting={Boolean}

Default: No
Purpose: This setting determines whether QAS Batch should run in QAS

Compatibility Formatting mode. Compatibility Formatting mode is not
certified, and will not use Delivery Point Validation, but does offer
increased flexibility in matching and output address formatting.

Example: If you want QAS Batch to run in QAS Compatibility Formatting Mode,
use the following:

CompatibilityFormatting=Yes

MultiValueDPSeparator

MultiValueDPSeparator={string}

Default: |
Purpose: This keyword can be specified for each layout in the configuration file.

If you are using United Kingdom with Gas or Electricity data, QAS
Batch API will return all multiple meter numbers. This keyword can be
used to change the default delimiter.
The delimiter cannot be alphanumeric. The API will verify the setting,
and use the default character if an invalid character is used.

Example: If you want the multiple meter numbers to be returned separated by a
comma, use the following:

MultiValueDPSeparator=,

177

QALICN Settings
Licence key information is located in qalicn.ini. This .ini file can be used for
adding, deleting and viewing licence information.

The licence keys can be found on the despatch note supplied with the data.

Each licence key should be inserted on a separate line.

178

Appendix A: Error Code
Listing

Below is a full list of error codes and their descriptions. Call the system function
QAErrorMessage to retrieve the top level message associated with the returned
error code, and QAErrorLevel to ascertain whether the error is serious or a
warning. If you require more specific error information,QAErrorHistory may be
repeatedly called.

It is strongly recommended that checks for specific return errors are not
hardcoded into your integration.

Code Internal name Meaning

-1000 qaerr_FATAL Fatal error

-1001 qaerr_NOMEMORY Out of memory

-1002 qaerr_INITINSTANCE Invalid multithreading instance

-1005 qaerr_INITOOLARGE INI file too large

-1006 qaerr_ININOEXTEND Could not extend INI file

-1008 qaerr_FILETOOLARGE File too large

-1009 qaerr_FILECHGDETECT Cannot detect file changes

-1010 qaerr_FILEOPEN File not found

-1011 qaerr_FILEEXIST File already exists

-1012 qaerr_FILEREAD File read failure

-1013 qaerr_FILEWRITE File write failure

-1014 qaerr_FILEDELETE Could not delete file

-1016 qaerr_FILEACCESS File access denied

179

Code Internal name Meaning

-1017 qaerr_FILEVERSION Incorrect version of data file

-1018 qaerr_FILEHANDLE Maximum number of files open

-1019 qaerr_FILECREATE Could not create file

-1020 qaerr_FILERENAME Could not rename file

-1021 qaerr_FILEEXPIRED Data file has expired

-1022 qaerr_FILENOTDEMO Can only access demonstration
data

-1023 qaerr_FILETIMEGET Failed to obtain file timestamp

-1024 qaerr_FILETIMESET Failed to modify file timestamp

-1025 qaerr_READFAIL Disk read failure

-1026 qaerr_WRITEFAIL Disk write failure

-1027 qaerr_BADDRIVE Invalid drive

-1028 qaerr_BADDIR Invalid directory

-1029 qaerr_DIRCREATE Could not create directory

-1030 qaerr_BADOPTION Invalid command line option

-1031 qaerr_BADINIFILE Could not locate INI file

-1032 qaerr_BADLOGFILE Could not create log file

-1033 qaerr_BADMEMORY Invalid memory configuration

-1034 qaerr_BADHOTKEY Invalid hot key

-1035 qaerr_HOTKEYUSED Hot key already in use

-1036 qaerr_BADRESOURCE Could not locate language file

-1037 qaerr_BADDATADIR Invalid data directory

-1038 qaerr_BADTEMPDIR Could not create temporary
directory

-1040 qaerr_NOTDEFINED Entry not defined

-1041 qaerr_DUPLICATE Entry duplicated

-1042 qaerr_BADACTION Invalid action

-1045 qaerr_BADDATE Invalid date or time

-1046 qaerr_BADTIMEZONE Invalid time zone

-1050 qaerr_CCFAILURE Copy control failure

-1051 qaerr_CCBADCODE Invalid copy control code

180

Code Internal name Meaning

-1052 qaerr_CCACCESS Copy control access denied

-1053 qaerr_CCNODONGLE Dongle not configured

-1054 qaerr_CCNOUNITS No units left on meter

-1055 qaerr_CCNOMETER Meter not initialised

-1056 qaerr_CCNOFEATURE Feature not supported

-1057 qaerr_CCINVALID SoftKey integrity failure

-1058 qaerr_CCNODCHKFAIL Node lock check failure

-1060 qaerr_CCINSTALL Copy control not installed

-1061 qaerr_CCEXPIRED Allowable time expired

-1062 qaerr_CCDATETIME Invalid copy control date or time

-1063 qaerr_CCUSERLIMIT Number of concurrent users
exceeded

-1064 qaerr_CCACTIVATE Copy control installed but not
activated

-1065 qaerr_CCBADDRIVE Invalid copy control drive

-1066 qaerr_CCREGISTER Product must be registered

-1070 qaerr_UNAUTHORISED Not authorised

-1074 qaerr_NOLOCALEFILE Locale file not found

-1075 qaerr_BADLOCALEFILE Invalid locale file

-1076 qaerr_BADLOCALE Unknown language/country

-1077 qaerr_BADCODEPAGE Unknown code page

-1078 qaerr_RESOURCEFAIL Resource lookup failure

-1080 qaerr_NOTHREAD Could not create thread

-1081 qaerr_NOTLSMEMORY Out of thread-local-storage

-1090 qaerr_NOTASK Could not create task

-1091 qaerr_LOADLIBRARY Could not load DLL or shared
object

-1094 qaerr_API_WORD Input value exceeds 16 bits

-1095 qaerr_API_DWORD Input value exceeds 32 bits

-1096 qaerr_CHARSET Invalid input characters

181

Code Internal name Meaning

-1097 qaerr_BUFFERTRUNC Buffer value truncated

-3801 qaerr_FORMATSYNTAX Incorrect formatting syntax

-3802 qaerr_TOOMANYADDRLINES Too many address lines requested

-3803 qaerr_INVALIDADDRESSLINE Address line out of range

-3804 qaerr_NOFORMATSPEC No format spec in INI file

-3805 qaerr_FORMATOVERFLOW Element(s) have overflowed

-3806 qaerr_FORMATTRUNCATED Element(s) are truncated

-3809 qaerr_DPFAILURE One or more DataPlus sets failed
to open

-3811 qaerr_
COUNTRYBASEMISMATCH

Invalid data mapping in layout

-4362 qaerr_NODATAMAPPINGS No valid data mappings were
found

-4363 qaerr_MISSINGDATAMAP Expected data mapping not
available

-4364 qaerr_NOLAYOUTSELECTED No layout selected

-4576 qaerr_DATASETSAMECOUNTRY Multiple base datasets configured
for the same layout

-4577 qaerr_NZLDELMISSING New Zealand Deleted Records
additional data missing

-4599 qaerr_
INPUTLINECOUNTREQUIRED

No InpuLineCount setting has
been found for Suppression

-4587 qaerr_NOMODECHANGE Estimate Mode cannot be changed
when any counter reports are open

-4588 qaerr_MORECLICKSNEEDED The function being called cannot
be run until more clicks have been
used

-4589 qaerr_BADAUDITCODE The audit code entered is invalid

-4593 qaerr_
NOACTIVESUPPRESSIONSETS

No active Suppression datasets
found

-4594 qaerr_
NOSUPPRESSIONHIERARCHY

Suppression hierarchy not found

182

Code Internal name Meaning

-4595 qaerr_DATAPLUSNOTAVAILABLE Suppression DataPlus configured
when Suppression is switched off

-4596 qaerr_INVALIDHIERARCHY Hierarchy must contain all active
Suppression datasets

-4597 qaerr_
MULTIPLEDATAPLUSPERLINE

Multiple suppression DataPlus per
line with permanent hierarchy
enabled

-4598 qaerr_
SUPPRESSIONNAMEREQUIRED

One of the input fields must contain
names information

-4785 qaerr_DDFDEFINITION Definition is incorrect in data

-4786 qaerr_INVALIDPRIORITY Priority rules is invalid

-4789 qaerr_PRIORITYEVALAMBIGUITY Priority rule evaluation is
ambiguous

-4960 qaerr_SLCASFUNC Invalid function call to
CorrectAddress engine

-4961 qaerr_SLCASFUNCMAP CorrectAddress function not
mapped

-4962 qaerr_SLCASDATAEXPIRED CorrectAddress data expired

-4963 qaerr_SLCASDATA Failed to open CorrectAddress
data files

-4964 qaerr_SLCASEWSDATA Failed to open EWS files

-4965 qaerr_SLCASSYSTEMERROR CorrectAddress API issued a
system error

-4966 qaerr_SLCASOUTOFMEM CorrectAddress API out of memory

-4968 qaerr_SLCASINVALIDLIC Invalid DPV licence key

-4969 qaerr_SLCAPIEXPIRED CorrectAddress engine has
expired

-8601 qaerr_NODEFAULTCOUNTRY Default country not specified

-8602 qaerr_NOINSTALLEDCOUNTRIES No installed countries found

-8603 qaerr_DEFAULTNOTINSTALLED Default country not installed

-8604 qaerr_INVALIDPRIORITY Error in priority string

-8605 qaerr_CALLPENDING A call is pending

183

Code Internal name Meaning

-8606 qaerr_NOTRUNNING The API is not running properly

-8608 qaerr_APIABORTED The API has shut down

-8609 qaerr_RUNNING The API is already running

-8610 qaerr_NOHANDLES No free API handles

-8611 qaerr_BADHANDLE Handle out of range

-8612 qaerr_NOSEARCHRESULTS Attempt to retrieve uninitialised
results

-8613 qaerr_OUTOFRANGE Line is out of range

-8614 qaerr_NOCOUNTRYFILE Country resource file not found

-8615 qaerr_COUNTRYRANGE Country out of range

-8616 qaerr_NOCOUNTRIES No countries are active

-8617 qaerr_LAYOUTRANGE Layout out of range

-8618 qaerr_INVALIDCOUNTRY Country name was not found

-8619 qaerr_COUNTRYVERSION Data file version incompatible with
product

-8620 qaerr_BADPARAMETER Invalid API function parameter
supplied

-8621 qaerr_PARAMETERTRUNCATED API function parameter truncated

-8622 qaerr_TOOMANYINPUTLINES Input line configuration limit
exceeded

-8623 qaerr_INVALIDINPUTITEM Invalid input line item configured

-8625 qaerr_INVALIDLAYOUT Specified layout is invalid

-8626 qaerr_LICENSINGERROR Licensing error has occurred with
one or more datasets

-8701 qaerr_DATANOTINITIALISED Data not initialised

-8702 qaerr_
COUNTRYALREADYINSTALLED

Data unexpectedly initialised

-12001 qaerr_TOKFUNC Unknown tokeniser API request

-12002 qaerr_TOKNOKERNEL Kernel not initialised

-12003 qaerr_TOKNOCOUNTRYFILE Cannot find country.ini

184

Code Internal name Meaning

-12004 qaerr_TOKBADCOUNTRYFILE Bad country.ini format

-12005 qaerr_TOKTOOMANYLINES Too many input specification lines

-12006 qaerr_TOKINVALIDINPUTITEM Invalid input item

-12007 qaerr_TOKPOSTCODEFORMAT Invalid postcode format

-12008 qaerr_TOKFOREIGNCITIES Unable to load foreign cities

-12009 qaerr_TOKCOUNTRYSPOT Unable to perform country spotting

-12010 qaerr_TOKCITYSPOT Unable to perform city spotting

-12101 qaerr_SLUFUNC Invalid USPS server request

-12102 qaerr_SLUNOHK No housekeeping instance present

-12103 qaerr_SLUNOUSPSDATA No USPS data present

-12104 qaerr_SLHNOKERNEL Kernel has not been started

-12105 qaerr_TPAPINOTLOADED Required third party API not loaded

185

Appendix B: Data
Checker Utility

You can check the integrity of Experian Data Quality data files using quchkn.exe.

Quchkn.exe is called as follows:

Windows Syntax QUCHKN (filespec)
QUCHKN -log -? show all command line options

UNIX Syntax QUCHK (filespec)
QUCHK -log -? show all command line options

Example QUCHKN H:\QAS\DATA*.*

Description Performs an integrity check on selected Experian Data
Quality data files. Uses a CRC (Cyclic Redundancy Check)
to verify that the contents of the data files are not corrupt. Can
be used to check for problems with the data or file corruption.

Windows options The buttons on the dialog once the application has been
launched can be used to perform the following actions:
Add... Add a data file to the list.
Remove... Remove the selected file from the list.
Check File Check the currently-selected file.
Check All Check all the files in the list.

UNIX options The following command-line arguments are available:
-INI:<file> Specify configuration file.
-SECTION:<file> Specify configuration section.
-DATADIR:<dir> Specify directory for data files.
-LOG:<file> Specify log file.
-ERRORS Enable error logging.

186

Appendix C:
Suppression Data –
Uses and Benefits

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Suppression data contains additional information associated with an address.
Specifically, you can clean your records against Suppression data and then
return relevant Suppression DataPlus information for any matching addresses in
your database. This makes it possible to see easily any names and addresses
which may not be useful to your business, and also to enhance your data with
additional information.

It is not possible to perform a clean against multiple datasets and one or more
Suppression dataset(s) at the same time.

There are a number of reasons why certain customers’ addresses may be
unsuitable for business use. These depend upon the particular Suppression set
in use:

Movers

NCOA Update

NCOA Suppress

Absolute Contacts (ABC)

Absolute Movers (ABS)

Goneaway Suppression File (GSF)

187

This data contains details of those people who have recently changed
address. Some Suppression data also provides associated forwarding
addresses.

Deceased

Mortality Suppressions (MSS)

Mortascreen (MOR)

NCOA Suppress

The Bereavement Register (TBR)

Australia Mortalities (AUSMOR)

This data contains the names and address details of people who have
passed away.

Preferences

Mailing Preference Service (MPS)

Telephone Preference Service (TPS)

This data contains the details of people who have opted not to receive
unsolicited mail / telephone calls.

For detailed information about the types of Suppression data that are available
with your dataset, refer to the Additional Data Guide that shipped with your
Suppression data.

Suppression data can be used in a variety of ways, depending on your business
needs. This section describes four of the most suitable and efficient uses of
Suppression data within QAS Batch API:

l Generating a high quality mailing list;

l Generating a complete mailing list;

l Generating a Suppression report;

l Adding Suppression information to your data.

188

Generating A High Quality Mailing List

Effective use of Suppression data enables you to save time and money, by
excluding from your mailing list those households or individuals who will choose
not to respond, or who are unable to do so.

Suppression data can be used to flag those people who have moved, who are
deceased, or who have expressed a preference not to be contacted. In addition,
you can filter out poor quality addresses which cannot be matched with
confidence against the official postal address files. Removing these details from
your mailing list will reduce the size of the list, while retaining its effectiveness.

To generate a high quality mailing list, follow these steps:

1. Clean your data against the official postal address files, in order to maximise
the chance of delivery. The addresses in your database may be cleaned
while retaining non-address information such as names and departments,
depending upon the nature of the records.

2. Clean your data against your Suppression dataset.

3. Produce a file containing only those addresses which are likely to be worth
mailing.

This should include both of the following:

l Addresses which produce Good or Verified matches when cleaned against
the official address files. See Match Success for more information about
match results.

l Records which were not matched against Suppression data.

To keep your address records up to date, it is recommended that you clean
your database periodically, and update all Suppression information stored
within it.

Generating A Complete Mailing List

To generate a complete mailing list, use QAS Batch API to produce a mailing list
containing all addresses from your original database, regardless of quality,
omitting only those which were matched against Suppression data.

This list will retain all other input records from your database, including those
addresses which could not be matched against the official postal address files.

189

Generating A Suppression Report

To generate a Suppression report, use the QABatchWV_CounterReport function
in file mode, using the command:

batwv <input file name> <output file name> <report file name>

This function is described in terms of how to perform it using the C test harness
supplied with QAS Batch; however, you may choose to use your own
implementation instead.

Adding Suppression Information To Your Data

You may find it useful to add Suppression information to your current database, in
order to carry out a statistical analysis of your data.

If you have configured Suppression DataPlus in your layout and an address
record in your database has been matched against a configured Suppression
DataPlus set, you will be charged a click for that match. You will be able to see
which Suppression set the record has been matched against, and will also be
able to view DataPlus information such as date of death.

Refer to the Suppression Additional Data Guide that shipped with your data for
more information about Suppression DataPlus.

190

Appendix D: Analysing
Costs of Suppression

Data

If you have cleaned your data against one or more Suppression dataset(s), you
will be invoiced for the number of clicks you have used. See About Clicks for more
information.

Suppression data can be paid for in multiple ways, and will depend on the meter
types associated with each suppression dataset, and which actions are
performed. Some datasets will include all of these different meter types, while
others may include only one. They include:

l Permanent Flagging

l One-Off Suppression

l Dual Suppression

l Tracking Suppression

For GBR Suppression, the cost will also be affected if you have activated the
Suppression Hierarchy (see page 194).

191

About Clicks
A click is a single count against a meter.

Depending on how an address record is matched against a Suppression

dataset, you may be charged for a permanent, one-off (temporary), tracking or
dual click. If an address record matches more than one Suppression dataset, the
order in which matches should be used (and therefore your costs) depends on
the options set in the Suppression Hierarchy.

If an address record is matched against a Suppression dataset, you will

be charged for a dual click.

Permanent Clicks

This information is only relevant when using GBR data with additional

Suppression data.

Users will be charged a permanent click if all of the following conditions are met:

l The user has set the UseSuppression ini setting to On. Refer to the United
Kingdom with Suppression Data Additional Data Guide for more information
about this setting.

l The user has configured QAS Batch API to return at least one Suppression
DataPlus item.

l An address record has matched to the Suppression dataset which the
configured DataPlus set belongs to.

For more information about configuring Suppression and about Suppression
DataPlus, see the United Kingdom with Suppression Additional Data Guide.

One-Off Clicks

This information is only relevant when using GBR data with additional

Suppression data.

192

Users will be charged for a one-off (temporary) click if all the following conditions
are met:

l The user has set the UseSuppression ini setting to On. Refer to the United
Kingdom With Suppression Additional Data Guide for more information about
this setting.

l Address records in their database have only matched against Suppression
datasets for which DataPlus is not configured. The user will not be told which
Suppression dataset has been matched, and obviously no DataPlus
information will be returned.

Dual Clicks

Dual meters are used when there is no price difference between Permanent and
One-Off suppression. If this option is available for a dataset it will usually be the
only meter available.

The user will be charged a dual click if they have set the UseSuppression ini
setting to On (refer to the Suppression Additional Data Guide for more
information); and either

l They have configured QAS Batch API to return at least one Suppression
DataPlus item and an address record has matched to the Suppression
dataset which the configured DataPlus set belongs to.

or:

l An address record in their database has matched to the Suppression dataset
without having any output DataPlus items configured. The record is
suppressed but no DataPlus information is returned.

For more information about configuring Suppression and about Suppression
DataPlus, see the Suppression Additional Data Guide that shipped with your
data.

Tracking Suppression

This information is only relevant when using GBR data with Tracking

Suppression data.

193

When using Tracking mode with the NCOA Update or Absolute Contacts
Suppression datasets, users will be charged one tracking click for returning a
forwarding address. Furthermore, if the forwarding address matches against other
Suppression datasets, these matches will be charged according to the criteria for
permanent and one-off clicks. See the United Kingdom With Suppression
Additional Data Guide for more information about NCOA Update and Absolute
Contacts data.

Suppression Hierarchy

This information is only relevant when using multiple GBR Suppression

additional datasets.

If an address record matches more than one Suppression dataset, the order in
which matches should be used (and therefore your costs) depends on the options
set in the Suppression hierarchy.

Once a record has been matched against a dataset in the hierarchy, the others
further down the list are not considered.

The Suppression hierarchy therefore allows the user to do the following:

l Control in what order they will be charged for clicks, which will minimise their
total expenditure;

l Specify some types of Suppression data (e.g. mortalities) above others (e.g.
goneaway or movers), so that they can filter some types of Suppression
matches from their database without removing others completely.

Notes On Suppression Hierarchies

l Hierarchies are specified within layouts.

l The SuppressionHierarchy ini setting is used to specify the datasets that
are in the hierarchy, and their order. If the hierarchy is not specified, an error
will be returned.

l The datasets listed in the hierarchy must match the sets in the Suppression
ini setting, or an error will be returned.

194

l The Suppression hierarchy is always used for one-off (temporary) clicks, but
is optional for permanent ones. The PermanentHierarchy ini setting is used
to activate the hierarchy for permanent clicks.

l When a permanent hierarchy is active, you will only be charged for the
highest matching set with DataPlus configured, and DataPlus information will
only be returned for that set.

l When you are using NCOA Update or Absolute Contacts data in tracking
mode, this operates outside of the permanent Suppression hierarchy, as
described below.

Refer to the United Kingdom with Suppression Additional Data Guide for
more information about Suppression hierarchy settings.

Tracking Hierarchy

NCOA Update and ABC data have their own Tracking Hierarchy. The Tracking
Hierarchy determines which of the Tracking datasets selected records are
searched against first and is completely separate from the Suppression
Hierarchy.

If you have returned a match against NCOA Update or Absolute Contacts (ABC)
data, these records will not be suppressed. Instead, the forwarding address will
replace the original address, ready to be exported or committed back to your
database.

You will be charged once for each match against the NCOA Update or ABC data
which returns a forwarding address. Subsequent matches against other datasets
will be made against the forwarding address, rather than against the previous
(obsolete) address.

Paying For Suppression Data
There are a number of steps which you must follow in order to pay for your use of
Suppression data. These functions are described in terms of how to perform them
using the test harness supplied with this product; however, you may choose to
use your own implementation instead.

1. Install QAS Batch API With Suppression data. For more information about
how to do this, see "QAS Batch API Installation" on page 5.

195

2. Use the QABatchWV_GetAuditCode function to extract a text-based audit
code from the counters file on the disk where QAS Batch API is installed.

To extract the audit code using the C test harness, start the test harness using
the following syntax:

batwv –audit

The harness will not start as normal; instead it will output the command to the
standard output channel, which can then be displayed or piped to a text file if
required. The following command will output text to <filename> instead of
displaying it:

batwv –audit > <filename>

3. Send the audit code by email to uk.support.qas@experian.com.

4. Experian Data Quality will process the audit code and will return a counter
update code to you by email.

5. Call the QABatchWV_ApplyUpdateCode function and enter the update code
received from Experian Data Quality in order to populate the counters file with
specified post-pay meters for each supported Suppression dataset.

As this is a one-off action, it can be performed as part of your initial API
integration, or by using the C test harness. However, the code will be
supplied in case you want to integrate the meter creation yourself at a later
date; for example, if your existing counters file becomes corrupted or if you
want to add extra Suppression DataPlus sets at a later date.

To create a meter, use the following switches when starting the test harness:

batwv –apply <update code>

batwv –applyfile <filename>

where <filename> is the name of a file containing the counter update code as
supplied by Experian Data Quality.

In the above cases the harness will not start as normal, but will attempt to
apply the update (printing any errors to the standard output channel).

6. The QAS Batch API product is then unlocked for use and begins to count the
clicks that will be charged for matches against Suppression data.

You should send your audit code to uk.support.qas@experian.com on a
monthly basis; you will then be invoiced according to the number of clicks
used.

196

Managing Suppression Costs
Though payment is submitted to Experian Data Quality on a month by month
basis, often it is useful to have more specific payment information available. For
example, it may be desirable to check how many Suppression clicks have been
used since the last time an audit code was sent to Experian Data Quality, or how
much one specific Suppression run would cost. The following three functions can
be used to determine more accurate payment information:

l To-Date Billing

l Temporary Counters

l Estimate Mode

To-Date Billing

To-Date Billing allows you to check the expenditure of an installation of QAS
Batch API without having to send the audit code to Experian Data Quality. This
has two advantages: that expenditure can be checked throughout the month, as
opposed to only at the end of the month, and that the information can be derived
locally and therefore immediately.

To use To-Date Billing, follow these steps:

1. Call the QABatchWV_GetAuditCode function to return the current audit
code.

2. Call QABatchWV_CompareAuditCode, using the current audit code and the
previously generated audit code (this can be the audit code previously sent to
Experian Data Quality, or one created since).

This function will output an XML report into the specified buffer.

The XML report contains information on click usage and Suppression, which will
allow a cost estimation to be calculated.

This report does not contain statistics from your QAS Batch API clean.

197

Temporary Counters

If accurate payment information is required during the cleaning and suppression
of a smaller part of a database, temporary counters can be created. Reports can
then be run, incorporating only the cleaning and payment information that has
been accumulated since the creation of the counters.

Once created, a counter is given a handle and can then be used to return an XML
report at any time, as many times as needed.

To create and use temporary counters, follow these steps:

1. Call the QABatchWV_CounterOpen function.

2. Run QAS Batch as normal. Suppression is optional.

3. Call the QABatchWV_CounterReportLength function and create a buffer of
the correct size for the XML report.

4. Call the QABatchWV_CounterReport function. The XML report will be
returned into the specified buffer.

5. Call the QABatchWV_CounterClose function when you have created all the
reports needed.

Once the counter has been closed, all the information that has not been stored
in an XML report will be lost. All reports required must be generated before the
counter is closed.

Estimate Mode

If it is required to determine the estimated price of a Suppression run without
being committed to paying for the clicks, an instance of the API can be run in
Estimate mode.

While in Estimate mode, Counters can be opened and closed, QAS Batch API can
be run as normal, and reports can be created. However no address will be
cleaned, all items will return the match code A0000000000000000000, and the
formatted line count will be zero.

The QAS Batch API statistics will be populated with the match details as if the run
has taken place, and the number of suppressed addresses and cleaning
information will be displayed.

198

To run the instance of the API in Estimate Mode, follow these steps:

1. Call the function QABatchWV_RunMode, passing a non-zero value into the
parameter viEstimateMode.

2. Call the QABatchWV_CounterOpen function.

3. Run QAS Batch as normal.

4. Call the QABatchWV_CounterReportLength function and create a buffer of
the correct size for the XML report.

5. Call the QABatchWV_CounterReport function. The XML report will be
returned into the specified buffer.

6. Call the QABatchWV_CounterClose function when you have created all the
reports needed.

7. Call the function QABatchWV_RunMode, passing zero into the
viEstimateMode parameter.

Estimate Mode will now finish. Information in any unclosed counters will be
lost.

The QAS Batch API statistics and counter usage are estimates only. Please be
aware that caching and threading changes could make a difference to the
actual run.

Troubleshooting
For information about possible errors that may be returned when you use QAS
Batch API with Suppression data, see -4593 to -4597 of the Error Code Listing.

For more information about Suppression datasets, including information about
how to configure Suppression and how to use Suppression DataPlus, refer to the
Suppression Additional Data Guide supplied with your data.

199

Appendix E: Names
Matching Tolerance

Levels

This information is only relevant when using GBR data.

If you are using AUS Suppression data, refer to your Suppression

Additional Data Guide for more specific information about AUS names
matching.

The NamesTolerance setting allows you to configure how QAS Batch matches
names records. The available settings for names matching are described below:

l "Exact" on page 201

l "Intermediate" on page 202

l "Standard" on page 203

l "Relaxed" on page 203

For information on how to configure Names Matching Tolerance, see
"NamesTolerance" on page 166.

200

Exact

In order to achieve a match under the Exact setting, an input name must achieve
the following criteria:

l There must be no spelling differences between the input name and the data.

Input Data Match?

Jonathan Smith Jonathan Smith Yes

Jonathan Smith Jonathon Smith No

l Forename aliases will not be matched.

Input Data Match?

William Smith William Smith Yes

Bill Smith William Smith No

l A gender-specific title in the input name must match the gender of the title of
the name in the data. Gender-neutral titles, such as 'Dr' may match to titles of
either gender.

However, gender-specific forenames will still factor into whether a match is
made.

Input Data Match?

Mr Alex Smith Mr Alex Smith Yes

Mr Alex Smith Mrs Alex Smith No

Dr Alex Smith Mrs Alex Smith Yes

Dr Alexander Smith Mrs Alex Smith No

l A full forename in the input will match to a forename initial in the data.
However, a forename initial will not match to a full name in the data.

Input Data Match?

William Smith W Smith Yes

W Smith William Smith No

201

l All name elements in the data must also be present in the input, and must
occur in the same order.

Input Data Match?

William Gerald Smith William Smith Yes

William Gerald Smith William Gerald Tony Smith Yes

William Gerald Smith Gerald Smith No

William Gerald Smith Gerald William Smith No

l If the input contains only a forename and surname, matches will still be
allowed, even if the matching record in the data also contains a middle name
or middle initial.

Input Data Match?

William Smith William Gerald Smith Yes

William Smith William G Smith Yes

l If the input contains a middle name, matches will still be allowed, even if the
matching record in the data also contains an additional middle name or
middle initial.

Input Data Match?

William Edward Smith William Edward Gerald Smith Yes

William Gerald Smith William Edward Gerald Smith Yes

William Edward Smith William Gerald Tony Smith No

Intermediate

The criteria for achieving a name match under the Intermediate setting are the
same as for the Exact setting, with the following exception:

l It is not necessary for all the name elements in the data to also be present in
the input to achieve a match. However all matching name elements must still
be in the same order.

Input Data Match?

William Gerald Smith Gerald Smith Yes

William Gerald Smith Gerald William Smith No

202

Standard

The criteria for achieving a name match under the Standard setting are the same
as for the Intermediate setting, with the following exceptions:

l Full forenames in the input can match to forename initials in the data.

Input Data Match?

WSmith William Smith Yes

William Smith W Smith Yes

l Matches may still be allowed, even with minor spelling differences between
the input name and data.

Input Data Match?

Jonathan Smith Jonathan Smith Yes

Jonathan Smith Jonathon Smith Yes

l Alias matches are allowed.

Input Data Match?

William Smith William Smith Yes

Bill Smith William Smith Yes

Relaxed

The criteria for achieving a name match under the Relaxed setting are the same
as for the Standard setting, with the following exception:

l A match can be achieved if the forename and middle names occur in a
different order in the input compared to the data.

Input Data Match?

William Gerald Smith Gerald William Smith Yes

203

Appendix F: Delivery
Point Validation

This information is only relevant when using USA data.

Delivery Point Validation (DPV) has been developed by the United States Postal
Service (USPS) to help you validate the accuracy of your address information. It
enables you to determine whether the actual address exists - all the way down to
apartment or suite information.

DPV Seed Addresses
The DPV functionality has in-built protection against the illegal creation of verified
address lists. This is ensured by having a concept of 'seed' addresses. These are
non-existent addresses that if searched upon, will deactivate the DPV
functionality within QAS Batch API.

If you encounter a seed address, you need to obtain an unlock code to re-enable
DPV functionality. You can then use the DPV unlock tool to unlock the
functionality. The unlock tool is an executable file named either dpv.exe (for 32-bit
installations) or dpv64.exe (for 64-bit installations).

QAS Batch will warn you if your DPV functionality is locked and you try to
perform certified cleaning on your data.

Encountering A Seed Address
If a seed address is encountered, a lock code is reported, together with
instructions on the re-enabling process.

205

The lock code is written to a file called DPVStatus.txt within the program directory.
Where it is not possible to write to the DPVStatus.txt file, no error will be returned
– the file will not be updated on the assumption that another instance of QAS
Batch API is attempting to write to it simultaneously.

Experian Data Quality is contracted to report this information on behalf of the
USPS:

"DPV processing was terminated due to the detection of what is determined to
be an artificially created address. No address beyond this point has been
DPV validated. In accordance with the Agreement between the USPS and
Experian Data Quality, DPV shall be used to validate legitimately obtained
addresses only, and shall not be used for the purpose of artificially creating
address lists. The written agreement between Experian Data Quality and the
End User also includes this same restriction against using DPV to artificially
create address lists. Continuing use of DPV requires compliance with all
terms of the Agreement. If you believe this address was identified in error,
please contact Experian Data Quality."

When a seed address is encountered and the DPV system disabled, you will
need to submit the lock code to Experian Data Quality Technical Support. You will
be provided with a corresponding alphanumeric unlocking key. This key, when
supplied back to QAS Batch API, will allow DPV functionality to be re-enabled.

QAS Batch API is supplied with a DPV Unlock Utility which can handle the
unlocking process for you. The Unlock Utility is provided for Windows users only,
and is called dpv.exe (for 32-bit installations) or dpv64.exe (for 64-bit
installations). If you are using UNIX or do not want to use the Unlock Utility, you
can manually supply the following information by contacting Experian Data
Quality Technical Support:

l The DPV lock code generated by QAS Batch API;

l The date that the seed address was hit;

l The full seed address that was hit;

l Your name, company name, full address and telephone number.

The lock code is reported when a seed address is encountered and can also be
obtained using the QABatchWV_DPVGetCode function (see page 84). The
remaining information can be obtained using the QABatchWV_DPVGetInfo
function (see page 87) provided the DPVStatus.txt file has successfully been
written.

206

Entering The Unlock key

The DPV Unlock Utility can apply the unlock code for you, or you can use the
QABatchWV_DPVSetKey function (see page 89).

The unlock key provided to you by Experian Data Quality Technical Support will
re-enable DPV functionality only once. USPS reserves the right to require
Experian Data Quality to suspend a user's ability to perform DPV processing
when multiple incidents of artificial seed address detection occur.

If you have problems applying the unlock code, contact Experian Data Quality
Technical Support by visiting: http://support.qas.com/contact.

Multithreading Considerations
QAS Batch API can support up to 8 simultaneous threads (providing you have
sufficient RAM available). QAS Batch API internally synchronises calls into it to
allow the API to support multithreaded integrations using a greater number of
threads.

DPV functionality affects the integration of the API in several ways.

First, if a search thread causes the DPV system to lock itself following a search
involving a "seed address", no further delivery point validation will take place for
any subsequent searches, regardless of the instance or search handle used.

Any call using a QAS Batch API instance handle that has a country base including
USA is able to interrogate the state of the DPV component by using
QABatchWV_DPVState (see page 90) and, where it is locked, will be able to
obtain the DPV lock code by using QABatchWV_DPVGetCode (see page 84)
and set a corresponding DPV unlock key with QABatchWV_DPVSetKey (see
page 89). However, the ability of one QAS Batch API instance thread to unlock the
DPV component that another QAS Batch API search related thread may be using
means that synchronisation related complexities must be taken into account.

For multithreaded integrations that require DPV functionality:

l Ideally, a dedicated top level thread should be used to perform DPV code/key
interrogation/unlocking to prevent multiple unlock attempts from occurring.

207

http://support.qas.com/contact

l Other threads may happen to be synchronised to search ahead of an attempt
to unlock the DPV component (i.e. at the low level within QAS Batch API), so
searches should be re-attempted where the "DPV disabled" bit is set in the
extended dataset-specific information component of QAS Batch API's return
code. See your Data Guide for further information on extended dataset-
specific information bits.

208

Appendix G: Generic
Information Bits

The generic information bits provide detailed information on how well an address
match conforms to the QAS Batch API matching rules. See "Matching Rules" on
page 38 for more information.

The numbers below are added together to make up the hexadecimal match code.
For example, 000A0000 would be the result of an error in the input street name
(00080000) and an added or changed street descriptor (00020000).

A brief explanation of each of the generic information bits is provided below.

10000000

The elements in the input address were not in the expected order.

For example, in the address 'Top Flat, 4 Baker Street, Dyfed, Aberystwyth, SY23
2BJ', the county (Dyfed) should appear after the town (Aberystwyth). In this
example, infobit 00000020 is also returned as a result of the address cleaning
process.

20000000

Preferred matching rules were not satisfied, and the match will be marked with, at
best, intermediate confidence.

40000000

The address has been marked with, at best, intermediate confidence because the
close matching rules were not satisfied.

209

80000000

Conditional formatting has taken place. Some address elements in the specified
output format were not present in the matched address record and have been
replaced with equivalent address elements. For more information on how QAS
Batch API can apply conditional formatting when using a particular dataset, and
which address elements may be affected, consult the relevant Data Guide.

01000000

Extra numbers were found in the address. An example might be '4 Granary 8
Road, Devizes, Wiltshire, SN10 3DP'. A full match was achieved (4 Granary
Road, Devizes, Wiltshire, SN10 3DP), but the additional number(s) (i.e. '8' in the
above example) may reduce the confidence level to intermediate.

02000000

Additional text between a number and its expected adjacent component has been
found, for example between a property number and a street name. The
confidence level has been reduced to intermediate.

04000000

No place element (e.g. a locality in Australia) was found in the address, so the
confidence level may be reduced.

08000000

The item associated with a number is missing. For example, the British address '4,
South Marston, Swindon, SN3 4XX' is missing the street name 'Ash Gardens' after
the building number. In this example, infobits 10000000 and 2000000 are also
returned due to the absence of a street name. In addition, further infobits are
returned as a result of the address cleaning process (i.e. adding the street name
and reformatting the address).

00100000

One or more essential matching rules were not satisfied, so the match confidence
has been reduced to low.

210

00200000

A timeout has occurred, and the address was not matched. The default timeout
period is 5 seconds; you can change this with the configuration setting
BatchTimeout in qaworld.ini.

00400000

The input address begins with unmatched text before a premise number. For
example, the input address 'Village Arcade, 5 Hillcrest Road, Pennant Hill, NSW,
2120' contains more information than the official version, which does not contain
the 'Village Arcade' element before the premise number, '5'. See also 00004000,
which is similar but occurs even if no premise number is present.

00800000

A leading number was unused in the input address. For example, the Level 5
element in the address 'L 5, 2/6 The Bollard, Corlette, NSW' is not found in the
official address.

00010000

There was ambiguity in the supplied range of the input address. For example, the
address '26-30 Delhi Street, Adelaide SA 5000' has an ambiguous range
because there is a 26, 28 and 30 Delhi Street and the input address cannot be
matched to a specific property.

00020000

A street descriptor has been added or has been changed. For example, with '10
Railway Road, Serviceton, Vic', the correct descriptor 'Street', is returned instead
of 'Road'.

00040000

Additional text in the input address was too significant to ignore. For example, the
French address '18 boulevard Voltaire, 75011 Paris CEDEX 11' contains
unmatched, but significant, information 'CEDEX 11'. This returns an intermediate
confidence level.

211

00080000

There was an error in the input street name that QAS Batch API has amended.

00001000

There was an error in an input place name (for example, an Australian locality)
that QAS Batch API has amended.

00002000

QAS Batch API has added or changed a key premise number or range compared
with the input address, such as a building number in Australia data where a
single number matched to a range, or organisation names in the France data.

00004000

The input address begins with unmatched text. For example, the input address
'Rose Cottage, Hillcrest Road, Pennant Hill, NSW, 2120' contains more
information than the official version, which does not contain the 'Rose Cottage'
element. See also 00400000, which is similar but occurs only when the
unmatched text occurs directly before a premise number.

00008000

A name was used to secure an address match.

00000100

The address line settings of the currently configured layout are of an insufficient
width to contain each address element. Widen the address lines to ensure that
the address elements are not truncated.

00000200

Complete address element(s) are unable to fit on the address line. Widen the
address lines to ensure that all of the address elements are visible.

00000400

QAS Batch API failed to generate one or more non-address items. It is likely that
the DataPlus set could not be opened.

212

00000800

When in enhanced cleaning mode, QAS Batch API cannot fill the unmatched
address elements back into the database. To resolve this, widen the address
lines or add additional lines.

00000010

Postal address elements have been moved to the right or downwards to allow
unmatched elements to be incorporated in an enhanced address.

00000020

QAS Batch API has determined that the supplied address has been non-trivially
cleaned. This means that spelling may have been corrected, capitalisation
changed, or the input address elements could have been reformatted in some
way. Note that quotes and spaces are ignored during QAS Batch API's
comparison process.

00000040

Key input address elements were judged effectively correct as supplied, although
the output address's representation or formatting may differ (for example, address
elements may have been expanded or abbreviated, capitalisation changes made,
etc).

00000080

If the user defines InputLineCount (including blank) and the input line count
does not match the number of lines defined in the input search string (allowing for
quotes), this bit will be set. This bit does not affect match confidence.

00000001

The final tests on the address have failed against the strict matching rules; hence
the match confidence level is reduced to, at best, intermediate confidence.

00000002

QAS Batch API has found a premise level partial address match.

213

00000004

QAS Batch API has found a street level partial address match.

00000008

QAS Batch API has found a place level partial address match.

214

Appendix H: Integration
Example

This information is only relevant when using GBR or AUS data with

additional Suppression data.

Below is an example of integrating the reporting functions into an instance of the
API. For more general examples of using the API, see "Pseudocode Example Of
QAS Batch API" on page 49. This integration example assumes you have
knowledge of the API functions. For more information on these, see Suppression-
Specific Functions.

Integrating XML reports

The conventions within the pseudocode are below:

Convention Meaning

/* Comment */ Italic text between asterisks and forward
slashes denotes a comment.

[QABatchWV_DataSetInfo] The functions which relate to each part of the
pseudocode appear in bold type on the right
hand side of the page.

[QABatchWV_Open (Close)] Some API functions are 'paired', i.e. when a
function is called, its pair must also be called at
some point. When a paired function is used in
the pseudocode, its pair appears in brackets
directly after the function name.

215

Pseudocode Listing

/* Before calling any function in the QAS Batch API, you must initialise it with
QABatchWV_Startup. Once initialised, you must open an instance of the API
*/
Initialise API [QABatchWV_Startup

(Shutdown)]
Initialise an instance of the API [QABatchWV_Open

(Close)]
Open a counter handle [QABatchWV_

CounterOpen
(CounterClose)]

/* Once the counter handle is open, addresses may be cleaned in the normal
way. For more information on how to do this, see "QAS Batch API Functions"
on page 54, and for examples see "Pseudocode Example Of QAS Batch API"
on page 49. Each address cleaned will be added to the open report, as well
as information about the number of clicks used. When address cleaning is
completed, you can output the information stored in the open report. */

Extract report using counter
handle

[QABatchWV_
CounterReport]

/* A XML report is returned into the specified buffer as a string. You can clean
further addresses and extract the report as many times as required. Once
completed, close the counter instance and the instance of the API */

Close the counter handle [QABatchWV_
CounterClose]

Close instance of API [QABatchWV_Close]
Shutdown API [QABatchWV_Shutdown]

While the instance of the API is open, you can use the function QABatchWV_
CounterReportLength at any time to return the current size in bytes of the XML
report that would be returned by QABatchWV_CounterReports

Viewing The Report

To view XML reports generated by QABatchWV_CounterReport:

1. Write the contents of the QABatchWV_CounterReport output buffer to an
.xml disk file.

2. A stylesheet is provided with QAS Batch to convert the XML into a browser
based report.

216

To generate the report ensure that the XSL stylesheet and the flash
components (supplied with QAS Batch) have been copied into the same
directory as the XML file.

3. The report will be displayed when the XML file is opened in your Internet
Browser.

217

Glossary Of Terms

Absolute Contacts
Absolute Contacts Tracking data is a subset of the Absolute Movers Suppression
Set which also contains contacts' forwarding addresses.

Absolute Movers
Absolute Movers data contains details of individuals who have moved from an
address.

Additional Dataset
Additional datasets are available with some datasets to enhance the data. They
cannot be used without the base dataset they are associated with.

For example, the Names additional dataset is available for USA and GBR data
only.

Address Elements
The fields that comprise an address. Each dataset contains a set of address
elements which are specific to that country.

For example, in United Kingdom data, these fields may include building number,
thoroughfare, town, and postcode.

Address Layout
The format of an address, arranged with the Address Elements in an order
specific to the convention of the country.

Address Match Code
See Match Code.

219

Audit Code
A text-based code located in the counters file on the disk where QAS Batch API is
installed. It should be extracted and sent to Experian Data Quality on a monthly
basis, in order that you can be invoiced for the number of clicks used. See
"Managing Suppression Costs" on page 197 for more information.

Audit Log
A log created at installation where the API regularly updates all current meter
values. This allows you to check your meter usage against your billing history.

Post-pay meters (for use with QAS Batch API with Suppression) will count down,
rather than counting up. See "Managing Suppression Costs" on page 197 for
more information.

Australia Mortality Data
Mortality data contains details of people who have passed away. Depending on
the options selected, you can match the records in your data to a household, to a
surname or to a named individual.

Clicks
A click is a single count against a meter. You may be charged for a permanent,
one-off (temporary), tracking or dual click when an address record is matched
against a Suppression dataset.

If an address record matches more than one GBR Suppression dataset, the order
in which matches should be used (and therefore your costs) depends on the
options set in the Suppression Hierarchy.

Configuration Files
Both Windows and UNIX users can use the configuration files (qawserve.ini and
qaworld.ini, as well as any layout-specific configuration files) to configure the QAS
server, to specify which Datasets are installed, to configure search options and
results settings and to set output address formats.

DataPlus
Extra information that can be returned with each matched address.

Examples of DataPlus information depend on the dataset being used, but
examples for United States data could include Country Code or a Postnet
barcode.

220

Dataset
A collection of proprietary data files, containing address information or address-
enhancing information, that are shipped to customers on a data CD-ROM or DVD-
ROM and are also available via Electronic Updates.

Dataset Identifier
The three character ISO code that uniquely identifies a dataset. For example, the
dataset identifier for United Kingdom data is 'GBR'.

Data Caching
Caching stores data in memory for future reference, instead of reading it from a
hard disk or across a network as required. In general, the less data is accessed
over a network or from a disk, the faster QAS Batch API will run (subject to your
computer having sufficient free physical memory).

Data Expiry
Each dataset has an expiry period.

The expiry period is the number of days remaining until the data is no longer
valid.

Data Guide
A reference guide that is supplied with each dataset that you purchase. It provides
dataset-specific information and search tips for each dataset.

Data Mapping
A combination of a dataset and additional datasets which is used as a dataset.
Each data mapping has a unique identifier and name.

Data Mapping Identifier
See Identifier.

DPV
DPV (Delivery Point Validation) is a USPS (United States Postal Service) system
designed to validate the accuracy of your USA address information. It enables
you to determine whether the address exists at a sub-premise level. DPV may not
be used to create address lists artificially. DPV uses Seed Addresses to detect
when address records appear to be the result of artificial manufacture.

221

Goneaway
GBR Goneaway Suppression File (GSF) additional suppression data contains
names and addresses of people who have moved house.

High confidence
QAS Batch API returns a High confidence match when it is sure that the output
address matches the input data. This happens when an input address is fully
accurate, or when incomplete address data is detailed enough (for example,
exact property number, street and locality) to have the remaining address details
appended.

Identifier
The identifier is a unique three character alpha-numeric code that defines a data
mapping.

Ini File
A common name for the Configuration Files qawserve.ini, qaworld.ini and
qalicn.ini, as well as any layout-specific configuration files you might create.

Input Fields
The fields in your source database containing the address information to be
cleaned.

Intermediate Confidence
A confidence level of Intermediate is returned when QAS Batch API is reasonably
sure that it has found the right match. This might occur if the input address is
misspelled slightly or if the address contains extra numbers.

Hullenbergweg, 1-3, 1101 BW, Amsterdam Zuidoost

In the Netherlands address example above, QAS Batch API finds an extra number
in the address (3). However, with a full postcode available to search on, QAS
Batch API is able to find the correct address. Only the extra number in the address
prevents a High confidence match.

ISO Code
International Standards Organisation code. See Dataset Identifier.

222

Licences
You receive a licence key for each combination of data and product that you
purchase. Failure to enter a valid licence key means that the product will be
unable to use data.

When you have an evaluation of an Experian Data Quality product or data,
evaluation licence keys are provided that set time limits on the usage of the data.
To continue using the product and data after these time limits have been reached,
you must purchase a full licence.

In addition, you can purchase a metered licence for use with QAS Batch API, to
control how address lookups, address matches and search results are charged.

Low Confidence
QAS Batch API sets the confidence level to low if it finds a match which differs
considerably from the input address.

Gehilweg 16, 1101 CD, Amsterdam Zuidoost

In the Netherlands address example above, QAS Batch API cannot find a
Gehilweg in Amsterdam, and returns another match (Hogehilweg 16) instead. As
the returned address is significantly different from the input address, QAS Batch
API is not confident that this is the right match.

Mailing Preference Service
GBR Mailing Preference Service suppression data contains details of individuals
who have opted not to receive unsolicited mail.

Match Code
When QAS Batch API cleans an address, any processing which takes place and
any changes which are made to the address are recorded in a match code.

Meter
A meter is used to measure usage of clicks. It contains the total number of clicks
used (by dataset and click type) since it was activated. There are four types of
click:

l Permanent

l One-off

223

l Dual

l Tracking

See "Managing Suppression Costs" on page 197 for more information about how
to pay for Suppression data via a meter.

MOR
See "Mortality Data" below.

Mortality Data
Data which contains details of people who are recently deceased. Depending on
the options selected, you can match the records in your data to a household, to a
surname, or to a named individual.

Examples of this type of data include the GBR Mortascreen, GBR Mortality
Suppressions and AUS Mortality suppression datasets.

MSS
See "Mortality Data" above.

NCOA Suppress
GBR National Change of Address Suppression data contains details of
individuals who have moved from an address.

NCOA Update
GBR National Change of Address Update tracking suppression data contains
names of customers and the details of addresses that mail has been redirected to
and from.

Output Fields
The fields in your database as they will appear after cleaning.

Sample Files
A number of files are shipped with QAS Batch API, containing sample addresses
for use with QAS data. You may find it useful to clean one of these databases
before you use QAS Batch API to clean your own data.

224

Seed Addresses
Seed addresses are used by the DPV system to protect against the illegal
creation of verified address lists. If one of these non-existent 'seed' addresses is
searched upon, the DPV functionality within QAS Batch will be deactivated. For
more information see "Appendix F: Delivery Point Validation" on page 205.

Suppression
Suppression data contains additional information associated with the occupant(s)
of an address. Specifically, you can clean your records against Suppression data
and then return relevant Suppression DataPlus information for any matching
addresses in your database. This makes it possible to see easily any addresses
which may not be useful to your business.

Telephone Preference Service
The GBR Telephone Preference Service suppression dataset contains details of
individuals who have opted not to receive unsolicited telephone calls.

The Bereavement Register
GBR Bereavement Register suppression data contains names and addresses of
deceased individuals.

Tracking
A Tracking dataset is similar to a Suppression dataset, but the forwarding address
of the property replaces the original record instead of it being suppressed.

Tracking Mode
When using NCOA Update or Absolute Contacts Tracking mode, users will be
charged one tracking click for returning a forwarding address. Furthermore, if the
forwarding address matches against other Suppression datasets, these matches
will be charged according to the criteria for permanent and one-off clicks. See the
United Kingdom With Suppression Additional Data Guide for more information
about NCOA Update and Absolute Contacts data.

Update Code
Code provided by Experian Data Quality on receipt of initial audit code. When
applied to an API installation, it initialises all post-pay Suppression counters.

225

227

Index

0
0 Low confidence 34

5
5 Intermediate confidence 35

9
9 High confidence 35

A
AbbreviateItem 174
ABC 195
Absolute Contacts 195
Acceptance matching rules 40
Adding licence keys 7
Address action indicator 36
Address match codes 29

address action indicator 36
match confidence level 34
match success 30
postal action indicator 35

AddressLineCount 172
AddressLineN 172

B
BatchTimeout 161

C
CacheMemory 164
CapitaliseItem 173
Checking dataset installation 151
Cleaning process 21

stage 1 - pre-process
address 23

stage 2 - match country 24
stage 3 - match street,

organisation, PO box
and place 24

stage 4 - match premises 25
stage 5 - select best match 25

CleaningAction 162
Clicks 192

dual 193
NCOA tracking 193
one-off 192
permanent 192

Close matching rules 39
ConditionalFormat 175
Configuration settings 150

AbbreviateItem 174
AddressLineCount 172

AddressLineN 172
BatchTimeout 161
CacheMemory 164
CapitaliseItem 173
CleaningAction 162
ConditionalFormat 175
CorrectAApiLoc 154
CorrectACacheLevel 165
CorrectADataLocCAN 155
CorrectADataLocUSA 154
CountryBase 156
CountryRevert 158
DataMappings 152
DatasetPrecedenceOrder 168
InputLineCount 170
InputLineN 170
InstalledData 151
LogErrors 159
LogFile 160
MultiValueDPSeparator 177
NamesTolerance 166
OemCharacterSet 167
SearchLevel 163

Configuring QAS Batch API 147
checking dataset

installation 151
defining processing options156
format of a configuration file148
setting the input address

format 170
setting the output address

format 172
CorrectAApiLoc 154
CorrectACacheLevel 165
CorrectADataLocCAN 155
CorrectADataLocUSA 154

CountryBase 156
CountryRevert 158

D
Data

installing 10
licences 7
updating 10

Data files 15
Data types 43

function return values 44
NULL termination 45
padding 46
parameters - input 44
parameters - output 44
passing by value or

reference 45
programming languages 45

DataMappings 152
DataPlus 26
Dataset-specific matching rules 41
Dataset Identifier 15
DatasetPrecedenceOrder 168
Defining processing options 156
Delivery Point Validation 205
Diacritics 167
DPV 205

Enabling 206
Lock code 206
Multithreading

considerations 207
DPV Seed Addresses 205
Dual clicks 193

228

E
Electronic Updates 11
Encountering a Seed Address 205
Error code listing 179
Essential matching rules 39
Estimate Mode 198
EU 11
Evaluations 8

F
Files needed to run your

integrated application
UNIX 9

Format of configuration file 148
Function return values 44

G
General functions 54
Generic information bits 209
Generic matching rules 38

H
Hierarchy 194
High confidence 222
How Does QAS Batch API work?21
How QAS Batch API matches

addresses 21
stage 1 - pre-process

address 23
stage 2 - match country 24
stage 3 - match street,

organisation, PO box
and place 24

stage 4 - match premises 25
stage 5 - select best match 25

I
Information bits 36
InputLineCount 170
InputLineN 170
InstalledData 151
Installing

overview 5
system requirements 5

Installing QAS Batch
UNIX 9
Windows 9

Integration
XML Reports 215

Intermediate confidence 222
ISO codes 15

L
Licence

evaluation 8
licence key 178
upgrading 8

Licence key 178
Licence keys 7
Licences

adding licence keys 7
licence keys 7
Windows data installer 7

LogErrors 159
LogFile 160
Low confidence 223

229

M
Match confidence level 34

0 low 34
5 intermediate 35
9 high 35

Match country 24
Match premises 25
Match street, organisation, PO

box and place 24
Match success 30
Match success letters 30
Matching rules 38

Acceptance matching rules 40
Close matching rules 39
Country specific matching

rules 41
Essential matching rules 39
Generic matching rules 38
Preferred matching rules 39

Multithreaded integrations 48
Multithreading Considerations 207
MultiValueDPSeparator 177

N
NamesTolerance 166
NCOA tracking 193
NULL termination 45

O
OemCharacterSet 167
One-off clicks 192
Operating systems 5

Overviews
installing 5

P
Padding 46
Parameters

Input 44
Output 44

Passing by value or by
reference 45

Permanent clicks 192
Postal code action indicator 35
Pre-process address 23
Preferred matching rules 39
Programming languages 45
Pseudocode example of QAS

Batch API 49

Q
QABatchWV_ApplyUpdateCode 59
QABatchWV_ChangeLayout 61
QABatchWV_Clean 63
QABatchWV_Close 66
QABatchWV_

CompareAuditCode 68
QABatchWV_CounterClose 70
QABatchWV_CounterOpen 72
QABatchWV_CounterReport 74
QABatchWV_

CounterReportLength 76
QABatchWV_CountryCount 78
QABatchWV_DataInfo 58
QABatchWV_DataSetInfo 82
QABatchWV_DPVGetCode 84

230

QABatchWV_
DPVGetCodeLength 86

QABatchWV_DPVGetInfo 87
QABatchWV_DPVSetKey 89
QABatchWV_DPVState 90
QABatchWV_EndSearch 92
QABatchWV_

FormattedLineCount 94
QABatchWV_GetAuditCode 96
QABatchWV_GetCountry 98
QABatchWV_

GetFormattedLine 109
QABatchWV_GetLayout 111
QABatchWV_GetLayoutLine 58
QABatchWV_GetLicenceInfo 113
QABatchWV_GetMatchInfo 115
QABatchWV_GetUnusedInput 117
QABatchWV_GetUnusedLine 58
QABatchWV_LayoutCount 120
QABatchWV_LayoutLineCount122
QABatchWV_

LayoutLineElements 124
QABatchWV_LicenceInfoCount127
QABatchWV_Open 129
QABatchWV_RunMode 132
QABatchWV_Search 58
QABatchWV_Shutdown 134
QABatchWV_Startup 135
QABatchWV_

UnusedLineCount 137
QAErrorHistory 139
QAErrorLevel 141
QAErrorMessage 142
QAS Batch

installing 5
QASystemInfo 143

R
Re-enabling DPV 206
Replaced functions 58
Retrieval functions 56
Retrieving DataPlus information 26
Returned address 25
Running the test harness 18

S
Search functions 56
SearchLevel 163
Seed Addresses 205
Select best match 25
Setting the input address

format 170
Setting the output address

format 172
SETUP.EXE 9
Summary of QAS Batch API

functions 54
Supported operating systems 5
Suppression 187

clicks 192
costs 191, 197
dual clicks 193
Estimate Mode 198
hierarchy 194
managing costs 197
NCOA tracking 193
one-off clicks 192
payment 191, 195
permanent clicks 192
Temporary Counters 198
To-Date Billing 197

231

troubleshooting 199
uses 187

System functions 55
QAErrorLevel 141
QAErrorMessage 142
QASystemInfo 143

System requirements 5

T
TBR 188
Temporary Counters 198
Test harness 18
Testing your API installation 17
To-Date Billing 197
Tracking Hierarchy 195
Troubleshooting Suppression 199

U
Update postcode 162
Updating

data 10
Upgrading a licence 8
USA Specific DPV Functions 56

W
What is a licence key? 7
What is the QAS Batch API? 1
Windows data installer 7

X
XML Integration Example 215

232

	Introduction
	What Is QAS Batch API?
	What Does This Guide Contain?
	Accompanying Documentation
	Data Guide
	API Help

	Technical Support
	Web
	E-mail / Telephone

	QAS Batch API Installation
	Overview
	System Requirements
	Licences
	What Is A Licence Key?
	Adding A Licence Key
	Expiry Warnings
	Evaluations

	Installing QAS Batch API
	Windows
	UNIX

	Installing And Updating Data
	Windows
	UNIX
	About Data Files

	Activating Metered Datasets
	Testing Your API Installation

	The QAS Batch API Process
	How QAS Batch API Matches Addresses
	The Returned Address
	Retrieving DataPlus Information
	Using QAS Batch With Suppression Additional Datasets
	Address Match Codes
	Match Success
	Match Confidence Level
	Postal Code Action Indicator
	Address Action Indicator
	Information Bits
	Generic Information Bits
	Extended Information Bits

	Matching Rules
	Generic Matching Rules
	Essential Matching Rules
	Preferred Matching Rules
	Close Matching Rules
	Acceptance Matching Rules
	Further Rules
	Dataset-Specific Matching Rules

	API Function Reference
	Data Types
	Function Return Values
	Parameters (Input)
	Parameters (Output)
	Calling Functions From Languages Other Than C
	Passing By Value Or By Reference
	NULL Termination
	Padding
	Example Of Data Types

	Multithreaded Integrations
	Pseudocode Example Of QAS Batch API
	QAS Batch API Functions
	QABatchWV_ApplyUpdateCode
	QABatchWV_ChangeLayout
	QABatchWV_Clean
	QABatchWV_Close
	QABatchWV_CompareAuditCode
	QABatchWV_CounterClose
	QABatchWV_CounterOpen
	QABatchWV_CounterReport
	QABatchWV_CounterReportLength
	QABatchWV_CountryCount
	QABatchWV_DataSetCount
	QABatchWV_DataSetInfo
	QABatchWV_DPVGetCode
	QABatchWV_DPVGetCodeLength
	QABatchWV_DPVGetInfo
	QABatchWV_DPVSetKey
	QABatchWV_DPVState
	QABatchWV_EndSearch
	QABatchWV_FormattedLineCount
	QABatchWV_GetAuditCode
	QABatchWV_GetCountry
	QABatchWV_GetDataSet
	QABatchWV_GetDPFieldCount
	QABatchWV_GetDPFieldInfo
	QABatchWV_GetDPFieldName
	QABatchWV_GetFormattedLine
	QABatchWV_GetLayout
	QABatchWV_GetLicenceInfo
	QABatchWV_GetMatchInfo
	QABatchWV_GetUnusedInput
	QABatchWV_LayoutCount
	QABatchWV_LayoutLineCount
	QABatchWV_LayoutLineElements
	QABatchWV_LicenceInfoCount
	QABatchWV_Open
	QABatchWV_RunMode
	QABatchWV_Shutdown
	QABatchWV_Startup
	QABatchWV_UnusedLineCount
	QAErrorHistory
	QAErrorLevel
	QAErrorMessage
	QASystemInfo

	QAS Batch API Configuration
	Format Of A Configuration File
	Configuring QAS Batch API
	QAWSERVE Settings
	Checking Dataset Installation
	InstalledData
	DataMappings
	CorrectAApiLoc
	CorrectADataLocUSA
	CorrectADataLocCAN

	QAWORLD Settings
	Defining Processing Options
	CountryBase
	CountryRevert
	LogErrors
	LogFile
	BatchTimeout
	CleaningAction
	SearchLevel
	CacheMemory
	CorrectACacheLevel
	NamesTolerance
	OemCharacterSet
	DatasetPrecedenceOrder
	Certification

	Setting The Input Address Format
	InputLineCount
	InputLineN

	Setting The Output Address Format
	AddressLineCount
	AddressLineN
	CapitaliseItem
	AbbreviateItem
	ConditionalFormat
	AbbreviateAddr
	CompatibilityFormatting
	MultiValueDPSeparator

	QALICN Settings

	Appendix A: Error Code Listing
	Appendix B: Data Checker Utility
	Appendix C: Suppression Data – Uses and Benefits
	Appendix D: Analysing Costs of Suppression Data
	About Clicks
	Permanent Clicks
	One-Off Clicks
	Dual Clicks
	Tracking Suppression

	Suppression Hierarchy
	Paying For Suppression Data
	Managing Suppression Costs
	To-Date Billing
	Temporary Counters
	Estimate Mode

	Troubleshooting

	Appendix E: Names Matching Tolerance Levels
	Appendix F: Delivery Point Validation
	DPV Seed Addresses
	Encountering A Seed Address
	Multithreading Considerations

	Appendix G: Generic Information Bits
	Appendix H: Integration Example
	Integrating XML reports

	Glossary Of Terms
	Index

